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ABSTRACT 

 

Alterations of NMDA and GABAB Receptor Function in Development: A Potential 
Animal Model of Schizophrenia 

 
by 
 

Monica Bolton 
 

Dr. Jefferson Kinney, Examination Committee Chair  
Assistant Professor of Psychology 
University of Nevada, Las Vegas 

 
Schizophrenia is a debilitating mental disorder that affects up to 3% of the world 

population. The behavioral symptoms are categorized into positive and negative 

symptoms, which appear during late adolescence/early adulthood. Unfortunately, the 

underlying cellular and molecular mechanisms of the disease are poorly understood. 

Several hypotheses exist to explain mechanisms contributing to these behavioral 

alterations. One model proposes that a reduced function of the NMDA glutamate receptor 

on specific GABAergic interneurons may be responsible for deficits in schizophrenia. 

Post-mortem investigations provide evidence of reductions in both glutamate and GABA-

related proteins in patients with schizophrenia. Further, GABAergic interneurons that are 

activated by glutamate via NMDA receptors are important for oscillatory activity 

involved with sensory processing and cognitive function. Alterations in the function of 

NMDA receptors on GABAeric interneurons are implicated in regulating neural network 

activity and, if disrupted, could potentially lead to altered brain function and deficits seen 

in schizophrenia. Several investigations have demonstrated reduction in NMDA receptor 

function or GABA receptor function induces deficits consistent with schizophrenia.  

Recent approaches have also focused on changes in NMDA or GABA function related to 
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schizophrenia as a neurodevelopmental disorder. This approach suggests that alterations 

in either system during brain development may result in behavioral deficits later in life. 

The purpose of the below studies was to determine if changes in NMDA receptor 

function or alterations in downstream GABA receptor function during development in 

rodent pups results in behavioral or biochemical alterations in adulthood that are relevant 

to schizophrenia. The data reveal that altering these receptor systems in development 

produce deficits in adulthood. Changes in sensorimotor gating, spatial learning and 

memory, and differential expression of multiple GABA related proteins in the brain 

tissue were observed in these animals.   
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CHAPTER 1 

INTRODUCTION 

 While the etiology of schizophrenia is not known, several behavioral symptoms 

exist that characterize the disorder. Patients suffer from a combination of symptoms 

including hallucinations and delusions (positive symptoms), as well as deficits in 

sensorimotor gating, learning, and memory (negative symptoms) and others. Although 

the symptoms appear during early adulthood or late adolescence, the disorder may 

originate from an unknown neurodevelopmental abnormality (Weinberger, 1987). 

Numerous studies have been carried out in order to better understand the cellular and 

molecular basis of this disease in order to effectively treat patients.  

 One of the current hypotheses to explain the pathophysiology of schizophrenia 

proposes that there is a reduction in glutamate and γ-aminobutyric acid (GABA) 

signaling in the brain. Specifically, a reduction of the N-methyl-D-aspartate (NMDA)-

type glutamate receptor function on GABAergic interneurons produces altered network 

function and deficits associated with schizophrenia (Javitt, 2007). Administering drugs 

which block the NMDA receptor in healthy individuals produces behavior that is similar 

to the positive and negative symptoms observed in schizophrenic patients, and these 

drugs exacerbate symptoms in schizophrenic patients (Adler et al., 1999; Javitt & Zukin, 

1991; Krystal et al., 1994; Lahti et al., 1995; Luby et al., 1962). Post-mortem 

investigations of schizophrenia populations also reveal a reduction in specific subunits of 

the NMDA receptors and several protein markers associated with GABAergic 

interneurons (Benes & Berretta, 2001; Bullock et al., 2008; Hashimoto et al., 2003; 

Mirnics et al., 2000; Torrey et al., 2005). These proteins include glutamate decarboxylase 
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67 (GAD67; enzyme required for GABA synthesis; Akbarian et al., 1996; Kaufman, 

Houser, & Tobin, 1991; Volk et al., 2000) and parvalbumin (PV; a calcium binding 

protein; Beasley & Reynolds, 1997). Many behaviors depend on the activation of 

GABAergic interneurons via glutamate binding to NMDA receptors including network 

oscillations involved in learning and memory and cognitive function, as well as the 

development of neural networks during brain development. 

 GABA signaling is imperative for initiating and maintaining neural network 

oscillations (Gonzalez-Burgos & Lewis, 2008). Data suggests that the negative symptoms 

and cognitive deficits seen in schizophrenic patients may arise from abnormal oscillatory 

activity (Gonzalez-Burgos, 2010; Lewis, Hashimoto, & Volk, 2005; Uhlhaas & Singer, 

2010). NMDA receptor hypofunction on GABAergic cells could result in a reduced 

amount of GABA release. GABA release from these neurons inhibits a large population 

of downstream postsynaptic excitatory neurons, allowing them to become entrained into a 

synchronous firing pattern once the inhibition subsides (Roopun et al., 2008). GABA 

binds to both ionotropic (mainly GABAA) and metabotropic (GABAB) receptors. Binding 

to GABAA receptors results in fast-acting and short-lived inhibition (Macdonald & Olsen, 

1994; Watanabe et al., 2002) whereas activation of GABAB receptors results in a slower 

onset but long-lasting inhibitory effect (Kerr & Ong, 1992). The GABAB receptors have 

been shown to be important in maintaining oscillatory activity due to their sustained 

inhibitory properties (Scanziani, 2000). A reduction of GABA release or binding to 

receptors could result in asynchronous firing and possibly the abnormal oscillatory 

activity seen in schizophrenia patients.    
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Animal models of schizophrenia provide valuable insight into the mechanisms 

that may be involved in the disorder. Administration of ketamine (an NMDA receptor 

antagonist) to adult rodents produces deficits in sensorimotor gating, spatial learning and 

memory, and fear associative learning similar to what is seen in the patient population 

(Bolton et al., 2012; Cilia et al., 1997; de Bruin et al., 1999; Mansbach and Geyer, 1991; 

Sabbagh et al., 2012). Drugs that alter GABAB receptor function are less well studied in 

learning and memory and have been largely excluded for any potential role in 

schizophrenia. A limitation in the above studies is that they rely on drug being active at 

the time of testing. An alternative approach that may also allow investigators to 

incorporate the developmental theory of schizophrenia would be to administer drugs that 

target this system during development and test for behavior in adulthood.   

 A wealth of data examining brain morphology, protein expression changes, 

genetics, environmental factors, and gene-environment interactions suggests that some of 

the pathology leading to schizophrenia occurs during early brain development (Fatemi & 

Folsom, 2009; Lewis & Levitt, 2002; Lewis et al., 2004; Rapoport et al., 2005; 

Weinberger, 1987; Weinberger & Lipska, 1995). NMDA receptors and GABA signaling 

contribute to major developmental processes including neuronal migration, 

synaptogenesis, and incorporation of neurons into neural networks (Komuro & Rakic, 

1993; LoTurco, Blanton, & Kriegstein, 1991; Uhlhaas et al., 2010). An alteration in these 

receptor systems at critical brain developmental periods may have particular relevance to 

behavioral disturbances.  

 The purpose of this study was to determine if disrupting the function of NMDA or 

GABAB receptors in early life produces deficits consistent with schizophrenia in 
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adulthood. Our data demonstrate that a brief pharmacological alteration in NMDA 

receptor function and, separately, GABAB receptor function during early brain 

development of rat pups, results in altered behavior in adulthood in tasks that measure 

sensorimotor gating (using prepulse inhibition) and spatial learning in the Morris water 

maze. The most striking differences in these studies were differences between males and 

females receiving the same treatments, specifically the GABAB
 receptor antagonist 

(phaclofen) producing the most robust deficits. We also identified numerous changes in 

the tissue analysis in GABA related proteins as well as a marker for synaptic formation. 

These results suggest that alterations in of NMDA and GABAB receptors in brain 

development can produce lifelong impairments that may be related to neuropsychiatric 

disorders.  
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

Schizophrenia 

Schizophrenia is a debilitating brain disorder which affects up to 1-3% of the 

population with symptoms that cause lifelong impairments and disability (Rossler et al., 

2005). The clinical diagnosis is usually made in late adolescence or early adulthood when 

the symptoms typically first occur. These symptoms manifest into a constellation of 

behavioral abnormalities that are classified into either positive or negative subgroups. 

Characteristics of the positive symptoms include auditory hallucinations, delusions, and 

paranoia (Kay et al., 1987). Negative symptoms can be described as a deficit compared to 

the normal population. They leave patients with impairments in sensorimotor gating, 

attention, abstract reasoning, mental flexibility, learning and memory, affect, and certain 

aspects of information processing (Carter et al., 1996; Rushe et al., 1999; Swerdlow et al., 

1994). Because of these deficits, patients are left with a lifetime disability in a variety of 

everyday functional and social domains (Burns, 2007; Green, Kern, Braff, & Mintz, 

2000). Unfortunately, the etiology of schizophrenia is not known but there have been 

various cellular/molecular mechanisms proposed to account for the disorder. 

Several neurochemical hypotheses have been suggested to explain the 

pathophysiology of schizophrenia. The discovery of dopamine antagonists’ utility as an 

antipsychotic in the late 1950s suggested that dopamine has a role in the disorder. 

Dopamine is a monoamine neurotransmitter and has been shown to mediate multiple 

systems within the central nervous system (CNS); most importantly, it plays a major role 

in reward systems (Schultz, Dayan, & Montague, 1997) and motor function 
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(Korchounov, Meyer, & Krasnianski, 2010). The specific role of dopamine in 

schizophrenia remains to be identified; however, data indicate that antipsychotics 

alleviate positive symptoms by modifying dopamine receptor function, which suggests a 

dysregulation of dopamine in schizophrenia. Investigations of dopamine alterations in 

schizophrenia populations include the evaluation of post-mortem tissue, imaging in 

patient populations, and numerous animal models of dopamine dysfunction relevant to 

the disorder (Bird et al., 1977; Crow et al., 1979; Davis, Kahn, Grant, & Davidson, 1991; 

Elkashef et al., 2000; Haberland & Hetey, 1987; Howes & Kapur, 2009; Toru, 

Nishikawa, Mataga, & Takashima, 1982). Data from these studies have provided mixed 

evidence for altered dopamine in discrete brain regions as being associated with 

schizophrenia. These data also have provided the foundation for what is termed the 

dopamine hypothesis (Carlsson, 1988; van Rossum, 1966), which argues that elevated 

dopamine activity in subcortical regions (the striatum and basal ganglia) is associated 

with the positive symptoms of schizophrenia, while reduced dopamine activity within the 

cortex may be associated with the negative symptoms (Davis et al., 1991; Pycock, 

Kerwin, & Carter, 1980). However, limitations to this theory exist. For instance, the 

means by which dopamine tone is elevated in some regions and reduced in others has not 

been elucidated. Additionally, antipsychotic medications only moderately alleviate the 

positive symptoms and have limited efficacy for the negative symptoms (Javitt & Zukin, 

1991). Although dopamine tone is altered in schizophrenia, the dopamine hypothesis 

does not account for the cause of these changes. 
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Glutamate Hypothesis of Schizophrenia 

A more recent alternative model hypothesized to explain the cellular/molecular 

alterations in schizophrenia is based on a combination of data from drug abuse literature 

and separate post-mortem examinations of schizophrenia populations. The model 

proposes that there is a reduction in glutamate signaling within discrete circuits of the 

brain, which may account for the behavioral symptoms of schizophrenia and also may 

cause alterations in dopamine signaling. Glutamate is the main excitatory 

neurotransmitter in the brain. Activation of glutamatergic receptors results in excitation 

of both excitatory and inhibitory neurons through a variety of receptors, including the 

NMDA receptor. The initial investigation of the NMDA receptor as it relates to 

schizophrenia began with individuals who abused drugs that block these receptors 

(ketamine and phencyclidine; NMDA receptor antagonists). The effects of the abuse of 

these drugs as well as observations from previous studies with controlled administration 

of NMDA receptor antagonists to healthy volunteers showed that NMDA receptor 

antagonists are capable of mimicking the cognitive and behavioral symptoms of 

schizophrenia in healthy individuals (Adler et al., 1999; Krystal et al., 1994; Luby et al., 

1962). Additionally, abuse of ketamine or phencyclidine (PCP) by schizophrenic patients 

has been demonstrated to exacerbate schizophrenia symptoms and produce psychosis in 

stable patients (Javitt, 1987; Lahti et al., 1995; Luby et al., 1962). These early 

observations provide support that the NMDA receptor may be involved in the disorder.   

NMDA receptors play an important role in learning and memory, cognition, and 

sensory processing. In the hippocampus, NMDA receptors are necessary for long-term 

potentiation (LTP), a process in which the synaptic connections between two or more 
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neurons that fire together are strengthened (Bliss & Lomo, 1973; Bliss & Collingridge, 

1993; Hebb, 1949). This process is hypothesized to be vitally important for learning and 

memory and is strongly linked to new memory formation. Pharmacologically blocking 

the function of NMDA receptors leads to impaired cognition, learning, immediate recall, 

and long-term retention (Lee et al., 1993; Ohno, Yamamoto, & Watanabe, 1994).  

NMDA receptors are unique because they are both ligand and voltage-gated 

receptors. While the binding of glutamate and glycine to the NMDA receptor will induce 

a conformational change in the receptor, the presence of a magnesium (Mg+) ion bound 

to the inside of the channel at resting membrane potential (-65 mV) prevents the passage 

of any ions through the channel. When the membrane is depolarized by non-NMDA 

glutamate receptors (AMPA and kainite), the Mg2+ ion is driven out of the channel by 

electrostatic repulsion, allowing the channel to open and calcium (Ca2+) to enter (Mayer, 

Westbrook, & Guthrie, 1984; Nowak et al., 1984).  The influx of Ca2+ into the cell leads 

to an increase in membrane potential, as well as the activation of a variety of Ca2+ 

dependent second messenger systems (Kleinschmidt, Bear, & Singer, 1987). Therefore, 

activation of the NMDA receptor requires a unique combination of ligand binding and 

membrane depolarization.  

NMDA receptors are composed of subunits termed NR1, NR2, and NR3. All 

functional NMDA receptors contain one NR1 subunit and either one of several possible 

subunits of NR2 (NR2A-D) or NR3 (Monyer et al., 1992). Different subunit assemblies 

of NMDA receptors contribute different functional properties of the receptor, including 

the strength of the Mg2+ block, glycine sensitivity, and receptor occupancy (Ishii et al., 

1992; Kutsuwada et al., 1992; Monyer et al., 1992). For example, NR1-NR2A and NR1-
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NR2B channels are characterized by a stronger voltage sensitivity of the Mg2+ block (it 

takes a greater voltage change to dislodge the ion) compared to NR1-NR2C and NR1-

NR2D channels (Monyer et al., 1992). Because of the weaker Mg2+ block seen in the 

latter receptor channels, their function may be to detect relatively small postsynaptic 

depolarizations. Another functional difference between subtype assemblies is that NR2A-

containing receptor channels do not bind glutamate for very long (measured by offset 

decay time) compared to the other subtypes (Monyer et al., 1992). Consequently, NR1-

NR2B, NR1-NR2C, or NR1-NR2D receptors mediate longer-duration excitatory 

postsynaptic potentials as compared to NR1-NR2A receptors. Throughout a lifespan, the 

assembly of NMDA receptors differs (Akazawa et al., 1994). During development, NR1 

and all NR2 subunits are expressed at peak levels on postnatal day (PND) 7 in the rat 

brain (about third trimester for human brain development; Clancy et al., 2007); then, after 

PND 12, a distinct change in expression occurs for the NR2 subunits (Monyer et al., 

1994). There is a shift from the expression of NR2B and NR2D subunits, both of which 

are most abundant in the neonatal brain, to the expression of NR2A in the forebrain and 

NR2C in the cerebellum (Akazawa et al., 1994; Cull-Candy, Brickley, & Farrant, 2001; 

Monyer et al., 1994). Since many important cognitive processes depend on the NMDA 

receptors, altering their assembly and thus their activity can cause devastating effects.    

Alongside the previously mentioned drug abuse literature, complementary data 

from post-mortem examinations of schizophrenic patients have given further valuable 

insight into the possible glutamatergic changes that occur in the disorder. Not only is 

glutamatergic tone reduced in schizophrenia patients (Sherman et al., 1991; Squires et al., 

1993), differential expression of mRNA for the NR2A (increased levels) and NR2D 
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(decreased levels) subunits has been observed in the prefrontal cortex (Akbarian et al., 

1996). Additional changes include a reduction the NR1 subunit in the hippocampus 

versus healthy controls (Gao et al., 2010). These data suggest that not only is there an 

overall reduction in glutamate signaling, but there is also an alteration in the assembly 

and function of the NMDA receptor. 

GABA Signaling 

GABA is the main inhibitory neurotransmitter in the brain and is synthesized 

from glutamate by GAD67. GABAergic interneurons are responsible for inhibitory 

signaling that is vital for normal CNS function, including the regulation of network 

oscillatory activity. A necessary component of the activation of these GABAergic 

neurons comes from NMDA receptors. When glutamate binds, the receptors allow Ca2+ 

to enter causing the cell to depolarize and release GABA. These interneurons are very 

large compared to pyramidal neurons and connect onto many different excitatory 

postsynaptic neurons (e.g. dopamine, serotonin, glutamate). The rapid release of GABA 

onto the postsynaptic excitatory neurons produces a sustained inhibition. This inhibition 

entrains the postsynaptic neurons into a synchronous firing pattern and, once disinhibited 

(removal of inhibition), the neurons are then allowed to fire when receiving excitatory 

input from other cells. Based on the role of NMDA receptor function, it has been 

hypothesized that NMDA receptor-mediated excitation of GABAergic interneurons 

results in the inhibitory activity that drives network function. Numerous investigations 

have shown that NMDA receptors on inhibitory GABAergic interneurons are 

disproportionately more sensitive to NMDAR antagonists (Coyle, Tsai, & Goff, 2003; 

Grunze et al., 1996; Li, Clark, Lewis, & Wilson, 2002) and, more specifically, those that 
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contain PV may have relevance to schizophrenia (Beasley & Reynolds, 1997; Beasley e 

al., 2002; Coyle et al., 2003; Kinney et al., 2006; Morris, Cochran, & Pratt, 2005; 

Reynolds et al., 2001). These data suggest that a reduction in the function of NMDA 

receptors can cause a lack of inhibition in discrete brain regions that have PV+ 

GABAergic interneurons. The effect of this lack of inhibition is proposed to cause a 

disruption in the synchronous activity of downstream excitatory pyramidal neurons. 

GABAergic interneurons play an important role in the generation and entrainment 

of oscillations (Gonzalez-Burgos, 2010); therefore, neuronal synchronization is thought 

to rely on GABA-mediated inhibition. Gamma- and theta-wave oscillatory activity is 

suggested to underlie working memory and information processing between cortical areas 

and is related to cognitive function (Bartos, Vida, & Jonas, 2007; Cardin et al., 2009; 

Fries, 2009; Gonzalez-Burgos & Lewis, 2008; Roopun et al., 2008; Salinas & Sejnowski, 

2001; Sohal et al., 2009; Uhlhaas & Singer, 2010). Based on numerous studies, the 

cognitive deficits seen in schizophrenia may result from abnormal neuronal oscillatory 

activity (Gonzalez-Burgos, 2010; Lewis et al., 2005; Uhlhaas & Singer, 2010). 

Converging evidence suggests that the generation of oscillations, which are impaired 

during cognitive tasks in schizophrenic patients (Minzenberg et al., 2010; Spencer et al., 

2004; Woo, Spencer, & McCarley, 2010), depends on NMDA receptor-mediated 

transmission on PV+ GABAergic interneurons (Phillips et al., 2012; Sohal et al., 2009). 

Each PV+ GABAergic interneuron projects onto many excitatory neurons and 

disinhibition from one interneuron can desynchronize the majority of a local network, 

leading to a disruption in cortical processing (Moghaddam et al., 1997; Phillips et al., 

2012). Decreased expression of PV leads to increased asynchronous release of GABA 
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from PV+ GABAergic interneurons, which may result in a reduction in the ability of 

downstream excitatory neurons to integrate incoming stimuli, the functional consequence 

of which may be altered cognitive function and sensory processing (Javitt, 2009; Powell, 

Sejnowski, & Behrens, 2012; Uhlhaas & Singer, 2010). Although data provide evidence 

for a reduction in NMDA receptors and PV expression, the GABA receptors themselves 

may also play a role in desynchronization as it relates to schizophrenia.  

GABA binds to both ionotropic and metabotropic receptors in the central nervous 

system. Ionotropic GABA receptors (mainly GABAA) are ligand-gated ion channels 

permeable to chloride. Once GABA binds and activates these ionotropic channels, a fast 

acting inhibitory current is produced within the cell (Macdonald & Olsen, 1994). 

Conversely, the metabotropic GABA receptors (GABAB) are G-protein coupled receptors 

that are located both pre- and postsynpatically and produce a slow onset but longer 

lasting inhibition (Couve, Moss, & Pangalos, 2000; Kerr & Ong, 1992). Presynaptic 

GABAB receptors suppress neuronal Ca2+ conductance, leading to the inhibition of 

neurotransmitter release of the presynaptic neuron. Postsynaptic GABAB receptors 

increase membrane conductance to potassium (K+) leading to the hyperpolarization of 

postsynaptic neurons (Bettler e al., 2004; Bowery et al., 2002; Kohl & Paulsen, 2010; 

Misgeld, Bijak, & Jarolimek, 1995; Padgett & Slesinger, 2010). Functional GABAB 

receptors exist as heterodimers (Jones et al., 1998) comprised of a GABABR1 (contains 

binding site) and a GABABR2 subunit (contains regulatory G-proteins; Bowery et al., 

2002; Galvez et al., 2001; Kohl & Paulsen, 2010; Pinard, Seddik, & Bettler, 2010; 

Robbins et al., 2001). Compared to the function of the GABAB receptor, the function of 

the GABAA receptor is better understood because of its direct activation and fast 
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inhibition properties. Both GABAA and GABAB receptors are able to modulate GABA 

oscillations and LTP, which results in altered learning and memory functions (Scanziani, 

2000).   

Although the distinct roles the GABA receptors play in cognitive functions such 

as learning and memory are unclear, in vivo and in vitro studies have shown they are able 

to modulate neuronal oscillations. For instance, simultaneously blocking GABAA and 

GABAB receptor function in vitro facilitates theta frequency oscillations induced by a 

cholinergic agonist (Konopacki et al., 1997). Data from transgenic animals and 

pharmacological studies demonstrate that the GABAB receptor is vital for the stability of 

cortical circuits, possibly due to the longer lasting inhibitory properties of these receptors. 

GABABR1 knockout mice develop spontaneous seizures and premature death (Prosser et 

al., 2001; Schuler et al., 2001); meanwhile, high doses of GABAB receptor antagonists 

administered to adult rodents induce hippocampal and neocortical seizures (Leung, 

Canning, & Shen, 2005; Vergnes et al., 1997). However, the data regarding cognitive 

task performance and learning and memory are limited and inconsistent. Several studies 

indicate that low dose GABAB receptor antagonists enhance (Getova & Bowery, 2001; 

Helm et al., 2005; Leung & Shen, 2007; Mondadori, Jaekel, & Preiswerk, 1993; 

Mondadori, Mobius, & Borkowski, 1996; Staubli, Scafidi, & Chun, 1999) or do not alter 

cognitive task performance compared to controls (Zarrindast et al., 2002). Studies using 

GABAB receptor agonists are similarly inconsistent and sometimes contradictory 

(Myhrer, 2003). The incongruent results from GABAB receptor ligands may be due to the 

fact that the receptors are located both pre, post, and extrasynaptically and any functional 

effect of the ligand may not produce straightforward results.  
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Similar to what is found in post-mortem investigations with NMDA receptor 

subunits, GABAB receptors are also decreased in the prefrontal cortex and hippocampus 

of schizophrenic patients (Ishikawa et al., 2005; Mizukami et al., 2000; Mizukami et al., 

2002). Post-mortem analysis in schizophrenia populations have shown consistent 

alterations in GAD67 and PV expression in the hippocampus and prefrontal cortex 

(Beasley & Reynolds, 1997; Benes et al., 1991; Bullock et al., 2008; Hashimoto et al., 

2003; Mirnics et al., 2000; Reynolds, Zhang, & Beasley, 2001; Torrey et al., 2005). Since 

both of these proteins are specific to GABAergic interneurons, these data suggest that 

GABA signaling may be altered in the disorder as well.  

As previously discussed, the hypofunction of NMDA receptors may result in the 

disinhibition of GABAergic interneurons. It is also possible that the receptors to which 

GABA binds may be differentially expressed, such that a similar disinhibition occurs. If 

there is a reduction in pre- or postsynaptic GABAB receptor function, an alteration in the 

release or binding of GABA potentially results in asynchronous activity. Disrupting the 

function of either NMDA receptors or GABAB receptors could conceivably result in the 

same change in oscillatory activity that has been speculated to occur in schizophrenia.  

Animal Systems to Model Mechanisms of Schizophrenia 

Although schizophrenia is an inherently human disorder, certain symptoms can be 

tested in rodent models. For instance, prepulse inhibition to test for sensorimotor gating is 

often examined in animal models of schizophrenia, as well as to test the potential efficacy 

of novel antipsychotics (Swerdlow, Braff, & Geyer, 2000). Additionally, the Morris 

water maze is utilized to look for spatial learning and memory deficits and cued and 

contextual fear conditioning is used to investigate associative fear learning. As noted 
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above, schizophrenia patients exhibit deficits in all of these tasks, suggesting the 

impairments may have relevance to the disorder.  

Sensorimotor gating can be described as the ability to filter extraneous noise from 

meaningful sensory inputs (Freedman et al., 1987). Patients have been characterized as 

being hypervigilant and sensitive to distracting sounds whereby their inability to gate 

stimuli makes them feel “flooded” by sensory stimulation (Venables, 1964). 

Sensorimotor gating can be measured in a task called prepulse inhibition (PPI) in both 

human and animals. PPI refers to the normal reduction of a startle response when a 

startling stimulus is preceded by a weaker, non-startling stimulus (prepulse). The theory 

is that the prepulse evokes an inhibitory response of the motor reflex that reduces the 

response to the startle stimulus (Braff & Geyer, 1990; Swerdlow, Geyer, & Braff, 2001). 

PPI is observed in neuropsychiatric disorders and can be modulated by drugs of abuse 

(Braff & Geyer, 1990; Geyer & Braff, 1987). Since PPI occurs on the first exposure of a 

prepulse-startle trial, it does not reflect a learned behavior but a reflexive response 

(Fendt, Li, & Yeomans, 2001; Graham, 1975; Hoffman & Wible, 1970; Ison, McAdam, 

& Hammond, 1973; Koch, 1999). Patients with schizophrenia startle similarly regardless 

of whether the startle stimulus is preceded by a non-startling, weaker prepulse, suggesting 

the prepulse does not inhibit this reflexive response as seen in healthy controls (Geyer & 

Braff, 1987). This disruption in PPI suggests a failure in sensorimotor gating that may 

result from stimulus over-flow either from the external environment and/or from within 

the subject itself.  

Mediating brain regions for PPI of the startle reflex are found mostly within the 

brain stem. Briefly, the acoustic prepulse is relayed from the inferior and superior 
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colliculus to the pedunculopontine tegmental nucleus, with lesser contributions to the 

circuit from the laterodorsal tegmental nucleus and substantia nigra, pars reticulata. 

Activation of the midbrain nuclei by the prepulse is converted into long-lasting inhibition 

of the giant neurons in the caudal pontine reticular nucleus, with the involvement of 

GABAB receptors contributing to the inhibition of the startle response (Fendt et al., 2001; 

Swerdlow et al., 2001). Other regions are shown to regulate the brain circuitry 

responsible for PPI, including the hippocampus and the prefrontal cortex, which have 

subcortical projections to the nucleus accumbens and ventral tegmentum (Swerdlow et 

al., 2001). Both NMDA and GABAB receptors contribute to this circuit and altering these 

receptors produces PPI deficits. This task is foundational as a preclinical behavioral test 

for animal models of schizophrenia.  

Another task used in research on animal models of schizophrenia to evaluate 

learning and memory deficits is the Morris water maze. Spatial learning and memory is 

disrupted in schizophrenic patients and it has been measured using a virtual, computer-

based water maze task (Folley et al., 2010; Hanlon et al., 2006). The original Morris 

water maze was developed for rodents and consists of a circular tank filled with opaque 

water and a submerged escape platform that is not visible. In order to locate the hidden 

platform using a spatial strategy, the animal must use spatial cues that are located outside 

the maze. Across days, control animals begin to utilize a spatial strategy that depends on 

the extra maze cues, which results in decreased latencies (time) to find the platform. To 

determine how well the animals learned the task, a probe trial is conducted in which the 

platform is removed and animals swim for a full trial period. Depending on how well 

they learned the task, the animals should spend most of their time in the area of the maze 
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where the platform was located. Performance in the water maze is disrupted after 

hippocampal lesions (Amaral & Witter, 1991; Moser, Moser, & Andersen, 1993) where 

both NMDA and GABAB receptors are prevalent (Dutar & Nicoll, 1988; Monaghan, 

Andaloro, & Skifter, 1998; Sakurai, Penney, & Young, 1993).  

Patients with schizophrenia exhibit deficits in emotional processing and emotional 

learning and memory (Hall et al., 2007). The deficits resemble those found in patients 

with amygdalae damage (Aleman et al., 2007; Hall et al., 2007; Kosaka et al., 2002; 

Whalley et al., 2009). For example, patients with schizophrenia have reduced activation 

of the amygdala when viewing emotional faces, as well as an alteration in hippocampal 

activity when viewing emotional scenes compared to control individuals (Hall et al., 

2007). Pavlovian fear conditioning is a type of associative learning task that has been 

utilized to test for deficits in emotional learning and memory in animal systems (Bolton 

et al., 2012; Kinney et al., 2002; Phillips & LeDoux, 1992). By pairing a neutral stimulus 

such as a tone (conditioned stimulus; CS) with one that elicits a fear response such as a 

mild foot shock (unconditioned stimulus; US), the CS will eventually elicit a similar fear 

response (freezing behavior in rodents) without the presence of the US. This association 

can be quantified using the fear response to the CS and serve as a measure of how well an 

animal learns the association. After training, the animal can be placed in a novel 

environment with the presentation of the original CS to determine the cued fear 

association (association of fear to the tone) or the animal can be placed in the original 

training environment with no CS presentations to demonstrate contextual fear association 

(association of fear to the environment). Different neural mechanisms and regions govern 

the associations utilized in this task depending on how the CS and US are presented 
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during training. In the standard delay cued and contextual fear (CCF) procedure, the CS 

and the US overlap in time and co-terminate. This training protocol requires amygdala 

activation to make the cued fear association (Davis & Whalen, 2001; Kinney et al., 2002; 

LeDoux et al., 1990; Phillips & LeDoux, 1992; Schafe et al., 2001) and the contextual 

fear association is dependent on the hippocampus (Chen et al., 1996; Holland & Bouton, 

1999; Kinney et al., 2002; Logue, Paylor, & Wehner, 1997; R. G. Phillips & LeDoux, 

1992). Manipulating the training protocol by inserting a temporal gap between the 

cessation of the CS and the onset of the US (trace CCF procedure) makes the task more 

difficult and more presentations of the CS and US are required to learn the association 

(Beylin et al., 2001; Kinney et al., 2002). Also, both the hippocampus and amygdala 

become imperative to make the cued fear association (Bolton et al., 2012; Kinney et al., 

2002; McEchron et al., 1998; 2000; Moyer, Deyo, & Disterhoft, 1990; Ryou, Cho, & 

Kim, 2001; Solomon et al., 1986; Sutherland & McDonald, 1990; Weiss et al., 1999) 

while contextual fear is still dependent on the hippocampus (Bolton et al., 2012; Chen et 

al., 1996; Holland & Bouton, 1999; Kinney et al., 2002; Logue et al., 1997; Phillips & 

LeDoux, 1992). Manipulations that result in differences in fear responses can reveal 

deficits in the mechanisms associated with different brain regions.  

The above behavioral tasks are used to measure learning and memory deficits in 

rodents with relevance to those observed in the schizophrenia population. NMDA 

receptor antagonists have been used in animal models to investigate symptoms associated 

with schizophrenia. As previously mentioned, these antagonists include PCP, ketamine, 

as well as MK-801. Although PCP produces more potent and longer lasting effects than 

the other NMDA antagonists, low doses of ketamine (subanesthetic doses) induce 
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changes in cortical GABAergic activity that result in disinhibition (Behrens et al., 2007). 

Subanesthetic doses of ketamine in adult rodents produce sensorimotor gating deficits as 

measured by PPI (Bolton et al., 2012; Braff & Geyer, 1990; Sabbagh et al., 2012), as well 

as behavioral alterations in the Morris water maze (Becker et al., 2003; Moosavi et al., 

2012; Sabbagh et al., 2012), and CCF (Bolton et al., 2012). Since blocking NMDA 

receptors on GABAergic interneurons produces a reduction in GABAergic tone due to 

diminished firing, an alternative approach to achieve a similar effect would be to alter 

GABA receptor function. As opposed to GABAA receptors whose responses are short 

lived, GABAB receptors provide the long lasting inhibition seen in oscillatory activity. 

However, drugs that target GABAB receptors are less utilized in schizophrenia research 

compared to NMDA receptor antagonists. As mentioned previously, GABAB receptor 

ligands administered to animals results in inconsistent behavior in learning and memory 

tasks (Myhrer, 2003). These inconsistencies may result because GABAB receptors are 

located pre, post, and extrasynaptically; further, the effect of the ligands may also rely on 

the task utilized. Our laboratory has demonstrated that administering a GABAB receptor 

agonist (baclofen) produces deficits in CCF (Heaney et al., 2012), and preliminary data 

suggest PPI deficits. While this approach to modeling schizophrenia has been productive 

in demonstrating potential mechanisms involved in the disorder, one drawback is that 

these deficits are only present when the drug is active in the animal’s system. Therefore, 

it may be relevant to determine if alterations during development produce similar deficits 

without administering drugs at the time of behavioral testing. 
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Neurodevelopmental Approaches 

Based on the typical age of diagnosis of schizophrenia and the overlap of this time 

point with several developmental processes, schizophrenia is suggested to be the result of 

disturbances in early brain development. Multiple proposed models argue that a change 

in developmental trajectory results in schizophrenia, which is not evident until early 

adulthood (Fatemi & Folsom, 2009; Lewis & Levitt, 2002; Lewis et al., 2004; Rapoport 

et al., 2005; Weinberger, 1987; Weinberger & Lipska, 1995). Studies that support this 

approach focus on post-mortem tissue analysis of patients with schizophrenia and the 

genetic and/or environmental stressors. 

Post-mortem tissue analysis reveals that there are changes in specific circuits in the 

brain related to subtle variations during development. These investigations have found 

cytoarchitectural disorganization in the hippocampus with too few neurons in the 

superficial layers and too many neurons in deeper layers (Jakob & Beckmann, 1986). 

This study has since been replicated using similar methodology and extended into the 

prefrontal, temporal, and limbic cortices with the same results (Akbarian et al., 1996; 

Arnold et al., 1991; Benes et al., 1991). This cytoarchitectural disorganization suggests a 

failure of neuronal migration and inappropriate final placement of neurons, an event that 

occurs during early development. In normal brain development, the migration of neurons 

to these regions occurs during the second trimester of intrauterine development (Rakic, 

1988). The disorganization of this process could potentially result in altered connectivity 

of these regions. Additionally, other post-mortem studies of patients with schizophrenia 

indicate there are no signs of neuronal damage (Falkai & Bogerts, 1986) and no sign of 

progressive worsening of the pathology over time, indicating that the cytoarchitecture 
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disorganization in schizophrenic patients must occur during development (Weinberger, 

1987; Weinberger & Lipska, 1995). The cause of the alterations in post-mortem tissue is 

not known but several potential mechanisms have been proposed.  

The initial disturbances during development might be triggered by a combination of 

genetic and/or environmental stressors. A number of susceptibility genes are associated 

with schizophrenia. For instance, the gene that encodes for the protein Reelin is reduced 

in the brains of patients with schizophrenia (Beffert et al., 2005; Impagnatiello et al., 

1998). Evidence from animal studies shows that an appropriate amount of Reelin is 

necessary for proper neuronal migration (Fatemi et al., 1999; Goffinet, 1979), and a 

reduced amount of Reelin results in cytoarchitectural alterations similar to what is seen in 

schizophrenic patients (Fatemi, 2005). Additionally, the transcription factor Lhx6 is 

reduced in post-mortem schizophrenia brains (Volk et al., 2012). Lhx6 is specific to cells 

that are destined to be PV+ neurons and, during the prenatal period, it participates in the 

regulation of cell type specification, tangential migration, and maturation of these 

specific PV+ GABAergic neurons (Liodis et al., 2007; Volk et al., 2012; Zhao et al., 

2008). Reduced Lhx6 in schizophrenic patients might explain the failure of PV+ neurons 

to appropriately express their phenotype. Changes in the expression of Reelin and Lhx6 

in schizophrenia patients provide support for a developmental origin of the disorder.   

 Genetic factors may make the system more susceptible to stressors, but they do not 

guarantee that one will inherit the disorder. Monozygotic twin studies indicate that there 

is only a 40-48% chance of one twin being diagnosed with schizophrenia if the other is 

already diagnosed (Suddath et al., 1990). These data indicate that although a genetic 

disposition to the disorder exists, there are environmental risk factors that also contribute 
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to the disease. Some environmental stressors that have been suggested to be involved in 

changing the developmental trajectory include maternal stress and infection, prenatal 

malnutrition, obstetric complications, and urban living (McNeil & Kaij, 1978; McNeil, 

1987; Vassos et al., 2012). Several large epidemiological studies indicate that prenatal 

exposure to viral infection increases the risk of schizophrenia due to the activation of the 

maternal immune response (Adams et al., 1993; Izumoto, Inoue, & Yasuda, 1999; 

Mednick, Huttunen, & Machon, 1994; Zuckerman et al., 2003). Stress in early life has 

been shown to produce behavioral differences in adult individuals and is complemented 

with data from rodent studies in laboratory settings (Gutman & Nemeroff, 2002). 

Although these studies inflict stress upon the developing fetus, the mechanism by which 

this would influence cytoarchitecture and molecular changes in the brain consistent with 

schizophrenia is not known.    

Development of the brain relies on the tightly regulated processes wherein the 

coordinated activity of various mechanisms is essential. NMDA receptor-mediated 

synaptic activity is necessary for normal development of various brain regions, as well as 

for coordinated network activity due to their involvement in critical processes such as 

establishing synaptic contacts, neuronal migration, and synaptogenesis (Contestabile, 

2000; Komuro & Rakic, 1993; LoTurco et al., 1991). However, GABA signaling 

precedes the development of NMDA receptor-mediated signaling and GABA plays a 

pivotal role in normal brain development as well. In early brain development, GABA 

acting on ionotropic GABAA receptors produces an excitatory, not inhibitory, response 

both in vitro and in vivo (Ben-Ari, 2007; Leinekugel et al., 2002; Sipila et al., 2006). This 

excitatory response is due to elevated intracellular chloride concentration in immature 
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neurons that begins to reduce to what is normally seen in mature cells around PND 5-7 in 

rodent pups and the effect of GABA acting on GABAA receptors becomes inhibitory 

around PND 10 (Ben-Ari et al., 1989; Ben-Ari et al., 2007). The early excitation provided 

by GABAA receptors aids in the membrane depolarization needed for NMDA receptors 

to expel the Mg2+ ion in order for the channel to be functional (Ben-Ari et al., 2007; Ben-

Ari et al., 1997). Presynaptic GABAB receptors are functional at birth and provide 

inhibitory control of neonatal network activity at this early stage in development (Ben-

Ari et al., 1997; McLean et al., 1996). Meanwhile, electrophysiological studies 

demonstrate that postsynaptic GABAB receptors on either pyramidal cells or interneurons 

are not functional during this time period (Caillard et al., 1998; Gaiarsa et al., 1995; 

Nurse & Lacille, 1999; Verheugen, Fricker, & Miles, 1999). Embryonic and neonatal rat 

hippocampal and cortical neurons do not exhibit postsynaptic GABAB receptor-mediated 

responses (the activation of potassium and the inhibition of Ca2+ currents) until after PND 

7 (Ben-Ari et al., 1997) due to the lack of coupling between the receptors and the ion 

channels (via G-proteins) (Fukuda, Mody, & Princa, 1993). The balance between 

excitation and inhibition during early brain development is vital for normal neuronal 

network formation.  

Since NMDA receptor activation is vitally important in development, and post-

mortem analyses point to alterations during critical periods associated with 

schizophrenia, studies have combined these theories by administering NMDA receptor 

antagonists to rodent pups during development to evaluate if deficits consistent with 

schizophrenia are produced. The first two weeks of life for a rat pup (especially at PND 

day 7) are a vulnerable period of brain development that correlates with the second 
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trimester of pregnancy in humans (See Figure 1 below; Bayer et al., 1993; Clancy, 

Darlington, & Finlay, 2001; Clancy et al., 2007). Studies have found that administering 

NMDA receptor antagonists (PCP, MK-801, and few using ketamine) during early stages 

of brain development in rodents (PND 7-14) results in an increase of neurodegeneration 

in brain areas implicated in schizophrenia and that this neurodegeneration is consistent 

with normal apoptosis that occurs during development and, therefore, is not related to 

excitotoxicity (Ikonomidou et al., 1999; Wang et al., 2001; Wang & Johnson, 2005). As 

mentioned, neurodegeneration and excitotoxic effects are not seen in post-mortem 

analyses of schizophrenic patients. Additionally, studies have found behavioral deficits in 

adult rats that had previously been administered NMDA receptor antagonists during the 

first weeks of postnatal life (see Figure 1 below). These studies demonstrate deficits in 

sensorimotor gating and PPI, consistent with schizophrenia-like symptoms (Abekawa et 

al., 2011; Anastasio & Johnson, 2008; Beninger et al., 2002; Broberg et al., 2010; Harris 

et al., 2003; Rasmussen et al., 2007; Turner et al., 2010; Van den Buuse, Garner, & Koch, 

2003; Wang et al., 2001; Wang & Johnson, 2005), with few using other behavioral tasks 

(Andersen & Pouzet, 2004). However, these previous studies use a moderate to high dose 

of drug that could possibly mimic a very large shutdown of the NMDA receptor system. 

It would be interesting to see if the effect of NMDA receptor antagonists administered at 

low doses produces similar learning and memory deficits in adulthood.    
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Figure 1. A comparison of rat and human brain development with a timeline of methods 
used in developmental approaches to schizophrenia. Derived from Tseng et al., 2009. 

 
The use of ketamine compared to other NMDA receptor antagonists in schizophrenia 

research has advantages. It is commonly used in veterinary medicine (and to some extent, 

pediatrics) as a dissociative anesthetic; however, at subanesthetic doses, it displays 

different properties. Compared to the other NMDA receptor antagonists, ketamine has a 

lower potency, a shorter duration of action, a faster rate of induction, and is effective 

across different animal species (Hevers et al., 2008). In our laboratory, the administration 

of ketamine in adult systems has proven to model deficits seen in schizophrenia for 

several behavioral tasks such as PPI, the Morris water maze, and trace CCF (Bolton et al., 

2012; Sabbagh et al., 2012). These features allow researchers to have better control of the 

drug in vivo, making it the optimal choice as an NMDA receptor antagonist. However, its 

utility at low doses in development to model deficits seen in schizophrenia has yet to be 

elucidated.     
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A more puzzling question in schizophrenia research is the effects of 

pharmacologically altering the GABAB receptor system in development. There has not 

yet been a study that examines administration of a GABAB receptor antagonist or agonist 

during development. Since NMDA receptors are centrally involved in the developmental 

pathogenesis of schizophrenia and rely on GABAB receptors during development, it is 

unknown what may occur if the GABAB receptor system is altered during this stage. As 

previously discussed, GABABR1 knockout mice display massive behavioral impairments, 

die prematurely, and may be a better model for epilepsy than schizophrenia (Prosser et 

al., 2001; Schuler et al., 2001). However, disturbing the GABAB receptors either by 

enhancing or inhibiting their function intermittingly could provide valuable insight into 

their role as it relates to this disorder.  
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Hypotheses and Implications 

 Building upon the wealth of research that implicates altered function of the 

NMDA receptor and changes in GABAergic signaling in schizophrenia as well as the 

importance of their role in brain development, we examined the behavioral and 

biochemical consequences of disrupting the functioning of either NMDA or GABAB 

receptors during critical time points in development. 

 Hypothesis 1:  

We administered the NMDA receptor antagonist ketamine at a low dose (8 

mg/kg) to rat pups at PND 7, 9, and 12. In adulthood, the animals should exhibit 

sensorimotor gating deficits measured by a reduction in PPI, impairments in 

spatial learning and memory demonstrated by the Morris water maze task, and 

deficits in fear associative learning seen in trace CCF compared to controls. The 

examination of brain tissue should result in alterations of proteins associated with 

NMDA receptors, GABA receptors, and GAD67, all of which have been found to 

be disrupted in schizophrenia.   

  Implications of Hypothesis 1: 

If the low dose ketamine administration during development produces 

behavioral and protein expression changes consistent with what is 

observed in other schizophrenia models, then the data would indicate that 

alterations in NMDA receptors at the specific time points (PND 7, 9, and 

12) induce a change in the system that results in deficits consistent with 

the disorder. Alternatively, if the dose and schedule of ketamine 
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administration does not induce the proposed deficits, it may be possible 

that a subtle, transient blockade of this receptor system is not enough to 

disrupt the developing network system and an increase in dose or multiple 

injection days may be considered.     

 Hypothesis 2: 

In addition to the administration of ketamine to post-natal rat pups, we 

administered the GABAB receptor antagonist phaclofen and the GABAB receptor 

agonist baclofen to different groups of animals. The injections were on PND 7, 9, 

and 12 to determine if a change in GABAergic signaling during critical periods 

produces changes in behavior. There is a delicate balance in GABA signaling 

during development (as previously demonstrated) so the present study will 

determine if blocking or enhancing GABAB receptor function during this 

developmental period alters behavior in adulthood. We hypothesized that 

phaclofen and baclofen, each, would produce behavioral deficits (reductions in 

PPI and deficits in the Morris water maze and trace CCF) similar to ketamine 

deficits in Hypothesis 1. Blocking (with phaclofen) or enhancing (with baclofen) 

theoretically would alter connections in the developing brain and change network 

function. We also proposed that the tissue analyses would indicate alterations in 

proteins related to the GABAergic signaling.  

 Implications of Hypothesis 2: 

If altering GABAB receptors, either by reducing or enhancing their 

function, during early brain development produces behavioral and/or 
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protein changes similar to what is seen in schizophrenia, then this 

experiment will provide evidence for the involvement of GABA signaling 

dysfunction potentially being involved in the disorder. If no deficits are 

detected with either phaclofen or baclofen, then alternate dosages and 

schedule of administration would be useful. The possibility exists that 

direct alterations of GABAB receptor function alone may be insufficient to 

alter developmental trajectories.  
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CHAPTER 3 

MATERIALS AND METHODS 

Subjects 

 Eight timed pregnant Sprague-Dawley dams were obtained from Charles River 

Laboratories (Hollister, CA). Dams were individually housed until parturition with a 12 

hour light/dark cycle and with food and water available ad libitum. The day of birth was 

considered PND 0. Pups were sexed and randomly assigned to one of four treatment 

groups (saline, ketamine, baclofen, or phaclofen) on PND 2. All pups were weaned on 

PND 21 and pair housed throughout the remainder of the experiment with male (n = 55) 

and female (n = 35) animals housed in separate colony rooms. Behavioral testing began 

on PND 60 which corresponds to brain maturity in early adulthood for humans (Pignatelli 

et al., 2006). All procedures were performed in accordance with NIH guidelines for 

ethical treatment of research subjects, and approved by the University of Nevada, Las 

Vegas Animal Care and Use Committee. 

Drug Treatments 

   All drugs were mixed with physiological saline (0.9% NaCl) to achieve a final 

concentration of 8 mg/ml ketamine (ketamine HCL from Henry-Schein, Indianapolis, 

IN), 2 mg/ml baclofen (baclofen hydrochloride from Sigma-Aldrich, St. Louis, MO), 0.3 

mg/ml phaclofen (from Sigma-Aldrich, St. Louis, MO). The drugs were administered 

subcutaneously (SC) at a dose of 1 ml/kg. Animals were randomly assigned one of the 

three treatment groups: saline (n = 14 males; n = 6 females), ketamine (n = 14 males, n = 

10 females), baclofen (n = 14 males; n = 9 females), and phaclofen (n = 13 males; n = 10 

females). 
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Apparatus 

Prepulse Inhibition of Acoustic Startle  

 Acoustic startle chambers (San Diego Instruments, San Diego, CA) measuring 28 

cm (W) x 28 cm (H) x 28 cm (L) were used for the acoustic startle and PPI. Inside the 

chamber, the animals were individually placed in a transparent Plexiglas tube (10 cm 

wide and 20 cm long) that is mounted on an accelerometer which measures changes in 

movement. A Cobalt Instruments computer using Acoustic Startle software package 

(Startle, San Diego Instruments) recorded the data from the accelerometer.     

Fear Conditioning Chambers 

 A Freeze Monitor chamber (San Diego Instruments) measuring 25.4 cm (W) x 

19.05 cm (H) x 25.4 cm (L) with a stainless steel grid floor and Plexiglas walls was used 

to perform both the fear conditioning training and contextual fear test. The chamber was 

cleaned with Formula 409 (Chlorox, Oakland, CA) solution at the end of each session. 

An altered context chamber was used to test cued fear. This chamber consisted of an 

opaque plastic enclosure measuring 12.7 cm (W) x 26.67 cm (H) x 43.18 cm (L) with the 

addition of a vanilla scent on an inner wall to ensure a different olfactory background for 

the altered context. A solution of 0.1% ethanol was used to clean the chamber after each 

session. The chambers were connected to a Cobalt Instruments computer with the Freeze 

Monitor software (San Diego Instruments) to run each session. Freezing behavior (no 

movement besides breathing) was recorded every 10 seconds.  
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Morris Water Maze 

 The Morris water maze procedure was performed in a white polyethylene circular 

tank, 1.8 m (diameter), 76 cm (H), and 4.7 mm in thickness (San Diego Instruments). The 

tank was filled with tap water 48 cm deep and maintained at 25˚C. The addition of non-

toxic paint made the water opaque to conceal the hidden platform (10 cm x 10 cm square 

platform made of clear plastic). The tank was divided into four quadrants, one in which 

the hidden platform was placed in the center 30 cm from inside the wall of the tank and 

1.5 cm below the surface of the water. A 13 cm x 13 cm square white plastic cover, 

protruding 3 cm above the water, was placed on top of the platform during the visible 

training trials. The tank was positioned in the center of a training room (separate from the 

colony room) with large geometric shapes positioned on all four walls to serve as distal 

spatial cues for the animals to find the hidden platform. Trials were recorded and 

captured using a video tracking system (Smart, San Diego Instruments) from a Sony 

Handycam camera connected to a Cobalt Instruments computer. Latency to locate the 

hidden platform, speed of swimming, and thigmotaxis (proportion of time spend along 

the outer edge of the maze) data was collected for each trial. The amount of time subjects 

spent in each quadrant was recorded for the probe trial. 

Tail Flick  

 The tail flick procedure was performed using a circular glass bowl, 20.32 cm 

(diameter) and 7.62 cm (H), filled with 1800 ml of water. The bowl was placed on a 

heating plate to maintain the water at 55˚C throughout each session.   
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Drug Administration 

 After the pups were sexed and randomly assigned to treatment groups on PND 2, 

they received 1 ml/kg subcutaneous injection of saline, ketamine, baclofen, or phaclofen 

on PND 7, 9, and 12 (Figure 1) then weighed every day until weaning (PND 21) to 

ensure proper growth and development.  

Behavioral Testing 

All behavioral testing began once animals reached PND 60 to ensure they reached 

early adulthood. All experimenters were blind to the subject’s treatment group throughout 

testing.  

Prepulse Inhibition of Acoustic Startle  

 Animals were taken into a separate training room and individually placed in the 

startle chambers. Animals were given five minutes to acclimate to the environment and 

presented with background noise (65 dB) throughout the session. Acoustic startle 

responses were examined after the presentation of 30 ms noise bursts of 90, 100, 110, and 

120 dB. Sensorimotor gating was tested with auditory white noise prepulses of 74, 82, 86, 

or 90 dB presented 40 ms or 100 ms prior to the 120 dB startle pulse. Inter-trial intervals 

were randomized between 10 and 55 seconds. For each session, a random order of trial 

type presentations was presented 5 times. When evaluating the acoustic startle data, the 

first trial of each acoustic startle intensity response was discarded and averages of the 

remaining four trials were used for calculation. Percent PPI was calculated using the 

following equation: 100-[(average startle response with pre-pulse)/(average acoustic 

startle)]*100.   
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Cued and Contextual Fear Conditioning (CCF) 

 Subjects were individually taken from the colony room and placed in the fear 

conditioning chamber located in a separate training room. The animals were allowed to 

freely explore the chamber during the initial two minutes of the training session in which 

no stimuli were presented. Following the initial two minutes in the chamber, a 2.9 kHz 88 

dB tone conditioned stimulus (CS) was presented for 30 s; 2.5 s following the termination 

of the CS, a 1 second 0.5 mA footshock (US) was administered. Following the 

termination of the US, a two minute interval elapsed prior to the next CS and US 

presentation. A total of 4 CS-US pairings were presented in the training session, each 

separated by two minute intervals. After the completion of the last pairing, the animals’ 

behavior was observed for a final two minutes. The animals’ freezing behavior was 

evaluated every ten seconds throughout the session by a trained experimenter blind to the 

experimental group. The criterion for freezing consisted of no movement of the animal 

other than breathing. Freezing behavior was recorded during the training session for the 

first two minutes (pre-training freezing) and for the final two minutes (post-training). 

Once the session was complete, the animal was returned to its home cage in the colony 

room and the chamber was cleaned.  

 Cued fear testing (fear to the CS) was examined 24 hours after training. Animals 

were individually placed in the altered context for a total of 13 minutes. The session 

consisted of an initial two minute interval, during which no stimuli were presented in 

order to evaluate freezing to the novel environment. A one minute presentation of the 

original CS used in training was presented, followed by a two minute interval between 

the onsets of the next CS tone, for a total of 4 CS tone presentations. Freezing behavior 
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was measured throughout the entire session. The animals were brought back to their 

home cage following the completion of the session and the chamber was thoroughly 

cleaned with 0.1% ethanol.   

 Contextual fear (fear to the training environment) was tested 48 hours after 

training. Animals were placed in the initial training chamber and allowed to freely 

explore for 10 minutes without any CS or US presentations. Freezing behavior was 

measured during the entire session in five, 2 minute bins. After the session, the animals 

were returned to their home cage and the chamber was cleaned.   

 A cued fear session (72 hours after training) and contextual fear session (96 hours 

after training) were administered in an identical fashion as previously described 

following the 48 hour contextual test. However, following the 96 hour contextual fear 

session, one CS-US pairing was presented (reminder trial) followed by a final two minute 

period of observation. An additional cued fear session (24 hours after reminder) and 

contextual fear session (48 hours after reminder) was carried out on subsequent days 

using the same protocols detailed above.     

Morris Water Maze 

 Individually, animals were taken from the colony room into a separate testing 

room. A computer desk, a table with a heating cage, large geometric shapes on each wall, 

and the experimenter served as distal spatial cues as they can be seen from inside the 

maze. The animal was placed into the maze and into the water along the outer wall of one 

of the three randomly chosen quadrants that do not contain the hidden platform. The 

animal was allowed to swim until locating the hidden platform or for a maximum of 60 

seconds. After 60 seconds, the experimenter guided the animal to the hidden platform. 
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Each animal was given 20 seconds to sit/stand on the platform to allow spatial orientation 

to distal extra-maze cues after which they were taken out of the maze and placed in a 

holding cage under a heat lamp for 30 seconds. Three additional trials were conducted 

using the same protocol for a total of four training trials per day. After the fourth interval 

under the heating lamp, the animal was gently dried with a towel and taken back to its 

home cage. The platform remained in the same location for each trial and across days. 

Training trials were conducted on successive days until the completion of either six days 

of hidden platform training or until the controls reached a latency of ≤ 15 seconds. The 

animals’ path, latency, thigmotaxis, swim speed, and quadrant location was recorded.   

 Once the control animals reached the hidden platform latency criterion, a single 

probe trial was performed the following day. The hidden platform was removed from the 

maze and the animal was allowed to swim for 60 seconds with the tracking system 

measuring the amount of time the animal spent in each quadrant. To examine the ability 

of how well the animals learn a new location of the hidden platform, a reversal procedure 

was used in which the platform was moved to the opposite quadrant (180 degrees from 

original location) and the animals were given four trials with the same protocol as a 

hidden platform day. To test for visual and motor capabilities, a non-spatial test was 

performed using a visible platform. This task is similar to the hidden platform protocol 

except that the platform is visible to the animal and moved on successive trials to 

different quadrants for each trial.       

Tail Flick 

 In order to ensure any differences that may be observed during the fear 

conditioning procedure are not tied to changes in nociception (i.e. analgesia), a standard 
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tail flick nociception test was performed on all animals. Subjects were individually taken 

from their home cage into a testing room. The initial 2–3 centimeters of the tip of the tail 

was placed in 55º C water and the latency for the animal to flick its tail out of the water 

was recorded. A maximum of 10 seconds was set as a criterion for withdrawal (flick). 

Tissue Analysis 

Tissue Collection 

 Following the tail flick test, all animals were humanely euthanized using CO2 

asphyxiation. Brains were immediately removed following CO2 asphyxiation. The frontal 

portion of the cortex was dissected out, placed in microcentrifuge tubes, and kept frozen 

at -80˚C until tissue homogenization.    

SDS-PAGE Western Blotting 

 Prefrontal cortices were homogenized using a RIPA buffer (20 mM pH 7.5 Tris-

HCL, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% sodium deoxycholate, 2.5 mM 

sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 µg/ml leupeptin; 

Cell Signaling, Danvers, MA) with 1 mM DTT, 1 mM PMSF, 20µg/ml aprotinin, and 

0.1% SDS added. Homogenization was performed using a handheld Polytron 

(Kinematica Inc., Luzern, Switzerland) tissue homogenizer. Homogenized tissue was 

centrifuged for 15 minutes at 15,000 x g at 4˚C. Supernatant was removed without 

disturbing the pellet and a protein concentration assay was performed using the 

bicinchoninic acid assay (BCA, Pierce, Rockford, IL). 

 Protein samples were loaded into 10% acryl gels at a concentration of 2 µg/µl 

with a mixture of Laemmeli buffer containing 2% SDS (BioRad, Hercules, CA) and DI 

water for a total of 10 µL volume. SDS-PAGE was held at a constant current 0.04 A for 
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45 minutes to separate protein samples according to molecular weight. Following the 

separation, the proteins were electrotransferred at 0.25 A for 1 hour to 0.2 µm 

nitrocellulose membranes (GE Water and Process Technologies, Feasterville-Trevose, 

PA). Membranes were placed in a blocking buffer with 5% BSA and TBST (1x Tris-

buffered saline with 0.05% Tween 20) before being incubated overnight at 4˚C in 

primary antibody (anti-GABAAα5 polyclonal rabbit, 1:750 (Millipore, Billerica, MA); 

anti-GABAB1 polyclonal rabbit, 1:2000 (Cell Signaling Technology, Danvers, MA); anti-

GABAB2 polyclonal rabbit, 1:1000 (Cell Signaling Technology); anti-GAT1 polyclonal 

rabbit 1:1000 (Cell Signaling Technology); anti-NR2B polycolonal rabbit 1:100 (Cell 

Signaling Technology); anti-Kalirin polyclonal rabbit, 1:1000 (Cell Signaling 

Technology); anti-β-Actin monoclonal rabbit, 1:20,000 (ProteinTech, Chicago, IL)). 

Membranes were returned to room temperature the following day and washed with TBST 

3 times for 10 minutes each. Following washes, membranes were incubated in secondary 

antibody (HRP-conjugated anti-rabbit, 1:5000, Vector Laboratories, Burlingame, CA) for 

1.5 hours at room temperature. Following 3 additional 10 minute washes with TBST, the 

membranes were exposed to Amersham ECL Plus detection system (GE Healthcare Life 

Sciences, Pittsburgh, PA) and imaged using a Typhoon 9410 Variable Mode Imager (GE 

Healthcare Life Sciences). ImageQuant 5.2 software (GE Healthcare Life Sciences) was 

used to determine protein quantities. The proteins of interest were normalized to β-Actin 

density. The treatment group’s normalized values were compared to the average control 

(saline) normalized values for each membrane. All SDS-PAGE experiments were all run 

in duplicate to ensure consistent data.   
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Statistical Analysis 

  Acoustic startle response and PPI data were analyzed via repeated measures 

analysis of variance (RM-ANOVA) across startle or prepulse intensities. One-way 

ANOVA for individual startle and prepulse intensities were performed after a significant 

RM-ANOVA. Mean latencies, swim speed, and thigmotaxis from the water maze for 

hidden platform days were analyzed across days using RM-ANOVA. Data from the time 

spent in each quadrant during the probe trial in the water maze were analyzed using one-

way ANOVA (target versus other quadrants). RM-ANOVA were used for the CCF data 

except one-way ANOVA were used to determine differences between treatment groups 

in pre CS-US freezing and post CS-US freezing on the training day. Mean latencies for 

tail flick and mean densities for western blotting were analyzed using one-way ANOVA. 

Tukey post-hocs were performed following a significant ANOVA. To parse out the 

differences between the control group and either ketamine or the GABAB ligands, 

separate analyses were conducted. Males and females were analyzed separately except 

when comparing males versus females for the GAD67 protein.   
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CHAPTER 4 

RESULTS 

Behavioral Testing 

Prepulse Inhibition of Acoustic Startle  

 A significant difference was observed in acoustic startle response (Figure 2) 

between treatment groups for the male animals (RM-ANOVA; F(3,216) = 3.425, p = 

0.018). The baclofen group exhibited a significant increase in startle response compared 

to saline (Tukey post hoc; p = 0.013). Analysis of individual startle intensities revealed 

that the significant increase in acoustic startle for the baclofen group occurred at 100 dB 

(One-way ANOVA; F(3,216) = 5.212, p = 0.002; Tukey post hoc: baclofen versus saline, p 

= 0.020) and 110 dB (One-way ANOVA; F(3,216) = 4.842, p = 0.003; Tukey post hoc: 

baclofen versus saline, p = 0.002) but not at 120 dB compared to saline. Conversely, 

significant reductions in startle responses were observed between the female treatment 

groups compared to saline (RM-ANOVA; F(3,136) = 6.942, p = 0.000). The baclofen and 

phaclofen treated groups displayed a significant decrease in acoustic startle response 

compared to saline (Tukey post hoc: baclofen versus saline, p 0.019; phaclofen versus 

saline, p = 0.009). The decrease in acoustic startle response occurred at the 120 dB 

intensity (One-way ANOVA; F(3,136) = 5.920, p = 0.001; Tukey post hoc: baclofen versus 

saline, p = 0.010; phaclofen versus saline, p = 0.004). 
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Figure 2. Acoustic Startle Responses. Mean startle amplitudes (±SEM) in response to 
noise bursts at multiple decibel intensities for males and females. Baclofen treated males 
exhibited a significant increase in startle response while the baclofen and phaclofen 
treated females displayed a significant reduced startle response. * = Significantly 
different from saline, p < 0.05.  

 For the PPI trials with a 100 ms inter-stimulus interval (ISI; Figure 3), no 

significant differences were observed between treatment groups compared to controls for 

the male animals across all prepulse intensities (RM-ANOVA; F (3,216) = 2.268, p = 

0.082). However, the female animals displayed a significant difference between treatment 

groups compared to controls (RM-ANOVA; F(3,136) = 8.586, p = 0.000). Across prepulse 

intensities, the female baclofen group (Tukey post hoc, p = 0.006) and phaclofen group 

(Tukey post hoc, p = 0.000) exhibited a significant reduction in PPI. These reductions 

were observed at all of the prepulse intensities except for the 86 dB prepulse (One-way 

ANOVA; 74 dB: F(3,136) = 4.058, p = 0.008, Tukey post hoc: baclofen versus saline, p = 

0.018, phaclofen versus saline, p = 0.010; 78 dB: F(3,136) = 5.066, p = 0.002, Tukey post 

hoc: balcofen versus saline, p = 0.015; phaclofen versus saline, p = 0.020; 82 dB: F(3,136) 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

90 100 110 120 90 100 110 120

Males Females

M
ea

n 
St

ar
tl

e 
A

m
pl

it
ud

e

Startle Amplitude (dB)

Saline

Ketamine

Baclofen

Phaclofen

*

*
**



www.manaraa.com

42 

 

= 4.354, p = 0.006, Tukey post hoc: phaclofen versus saline, p = 0.004; 90 dB: F(3,136) = 

3.571, p = 0.016, Tukey post hoc: phaclofen versus saline, p = 0.018)..  

Separate analyses were conducted to compare only the ketamine and saline 

groups for the PPI trials with 100 ms ISI (Figure 3). A significant reduction in PPI was 

observed between the ketamine treated female group versus the female controls across 

prepulse intensities (RM-ANOVA; F(1,62) = 8.313, p = 0.005), significant reductions were 

observed at the 74 (One-way ANOVA; F(1,62) = 7.525, p = 0.008) and 86 dB (F(1,62) = 

4.247, p = 0.044) prepulse intensities.  

 
Figure 3. Percent Prepulse Inhibition with 100 ms ISI. Mean percent PPI (±SEM) at 
multiple prepulse intensities preceding 120 dB startle stimulus. No differences observed 
between the male treatment groups while significant reductions in PPI were seen for the 
baclofen and phaclofen treated females. # = Significantly differently from saline 
(ketamine analyzed in isolation), p < 0.05. * = Significantly different from saline, p < 
0.05.  
 

 An evaluation of the PPI trials with a 40 ms ISI (Figure 4) revealed a significant 

difference between treatment groups across prepulse intensities in the male animals (RM-

ANOVA; F(3,161) = 3.931, p = 0.010). Post-hoc analyses revealed a significant reduction 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

74 78 82 86 90 74 78 82 86 90

Males Females

P
er

ce
nt

 P
re

pu
ls

e 
In

hi
bt

io
n

Prepulse Intensity (dB)

Saline

Ketamine

Baclofen

Phaclofen

** **
*

*
#

#



www.manaraa.com

43 

 

in PPI in the phaclofen group (Tukey post hoc: phaclofen versus saline, p = 0.024). One-

way ANOVA for each prepulse intensity revealed a significant reduction only at the 74 

dB prepulse (F(3,161) = 2.930, p = 0.035; Tukey post hoc: phaclofen versus saline, p = 

0.039). Female animals demonstrated a similar significant reduction in PPI across 

prepulse intensities (F(3,101) = 9.843, p = 0.000) for the phaclofen group compared to 

saline (Tukey post hoc: p = 0.000). One-way ANOVA for individual prepulse intensities 

revealed the same significant reduction at the 74 dB prepulse intensity (F(3,101) = 5.439, p 

= 0.002; Tukey post hoc: phaclofen versus saline, p = 0.006), 86 (F(3,101) = 4.322, p = 

0.007; Tukey post hoc: phaclofen versus saline, p = 0.010), as well as a significant 

difference at the 90 dB prepulse (F(3,101) = 3.145, p = 0.028; Tukey post hoc: phaclofen 

versus saline, p = 0.045).  

 
Figure 4. Percent Prepulse Inhibition with 40 ms ISI. Mean percent PPI (±SEM) at 
multiple prepulse intensities preceding 120 dB startle stimulus. Significant reductions in 
PPI were observed across prepulse intensities for both male and female phaclofen treated 
groups with a lack of PPI occurring at the 74 dB. * = Significantly different from saline, 
p < 0.05. 
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Cued and Contextual Fear Conditioning  

 No significant differences were observed in the freezing behavior of the males 

throughout training on Day 1 (see Figure 5). All groups froze equivalently during the two 

minute interval before the onset of the CS-US pairings (Pre CS-US; F(3,51) = 0.709, p = 

0.551) and during the two minute interval after the last CS-US pairings (Post CS-US; 

F(3,51) = 0.696, p = 0.559). Similarly, the female animals were equivalent in their freezing 

behavior between groups during the Pre CS-US (F(3,31) = 0.908, p = 0.448) and Post CS-

US (F(3,31) = 0.536, p = 0.661) as shown in Figure 5.  

 
Figure 5. Day 1 CCF Training. Proportion of time freezing (±SEM) was determined for 
the first two minutes of training (Pre CS-US) and the last two minutes of training (Post 
CS-US) for the males and females. No differences were observed between treatment 
groups.  

 Following training, fear to the CS in a novel environment (cued fear) was tested 

(Cued Fear Day 2; Figure 6a). No differences were observed between the male treatment 

groups in freezing behavior during the first two minutes of the cued fear session (Pre 

CS1; F(3,51) = 0.985, p = 0.407) and during the presentation of the cues (RM-ANOVA 

across CS1-CS4; F(3,51) = 0.767, p = 0.518). The female animals also displayed no 

differences in freezing between treatment groups during Pre CS1 (F(3,31) = 2.847, p = 

0.054) and similar freezing behavior during cue presentations (RM-ANOVA across CS1-

CS4; F(3,31) = 1.897, p = 0.151).  
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Freezing to the training environment on (contextual fear) on Day 3 (Figure 6b) 

revealed no differences between the male treatment groups across the entire session (RM-

ANOVA across Blocks 1-5; F(3,51) = 0.204, p = 0.893) and, consistent with the males, no 

differences were observed for the female animals  (RM-ANOVA across Blocks 1-5; 

F(3,31) = 2.626, p = 0.068).  

For Cued Fear Day 4 (Figure 7a), no significant differences were observed in 

freezing behavior between male treatment groups for Pre CS1 (F(3,51) = 0.885, p = 0.455) 

or across cue presentations (RM-ANOVA across CS1-CS4; F(3,51) = 0.348, p = 0.791). 

Female animals also displayed no significant differences between treatment groups for 

freezing behavior during Pre CS1 (F(3,31) = 0.670, p = 0.577) and across cue 

presentations(RM-ANOVA across CS1-CS4; F(3,31) = 0.989, p – 0.411). 
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Figure 6. Cued Fear Day 2 and Contextual Fear Day 3. Proportion time freezing (±SEM) 
was measured for Cued Fear Day 2 (a) during the first two minutes before the 
presentation of the cues (Pre CS1) and during the cue presentations (CS1-CS4) and for 
Contextual Fear Day 3 (b) during each 5 two minute blocks. No significant differences 
were observed between treatment groups.    

No differences in freezing were detected on Contextual Fear Day 5 (Figure 7b) 

between the male treatment groups (RM-ANOVA across Blocks 1-5; F(3,51) = 0.282, p = 

0.838) and female treatment groups (RM-ANOVA across Blocks 1-5; F(3,31) = 2.571, p = 

0.072) across the entire session. A single reminder trial (CS-US) was presented at the end 

of the session. During the two-minute interval following the reminder trial, neither male 

(F(3,51)  = 1.031, p = 0.387) nor female (F(3,31) = 0.369, p = 0.776) animals displayed 

differences in freezing behavior. 
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Figure 7. Cued Fear Day 4 and Contextual Fear Day 5. Proportion time freezing (±SEM) 
was measured for Cued Fear Day 4 (a) during the first two minutes before the 
presentation of the cues (Pre CS1) and during the cue presentations (CS1-CS4) and for 
Contextual Fear Day 5 (b) during each 5 two minute blocks. Freezing was measured 
during the cue presentation (Reminder) and the final two minutes after the CS-US 
presentation (Post Reminder).      
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Figure 8. Cued Fear Day 6 and Contextual Fear Day 7. Proportion time freezing (±SEM) 
was measured for Cued Fear Day 6 (a) during the first two minutes before the 
presentation of the cues (Pre CS1) and during the cue presentations (CS1-CS4). The 
phaclofen treated females displayed a significant decrease in freezing during the CS 
presentations. Proportion time freezing (±SEM) was measured for Contextual Fear Day 7 
(b) during each 5 two minute blocks. No differences between treatment groups were 
observed. * = Significantly different from saline, p < 0.05.    

Freezing behavior on Cued Fear Day 6 Post Reminder (Figure 8a) revealed no 

significant differences between treatment groups for the male animals for Pre CS1 (F(3,51) 

= 1.989, p = 0.127) and across cue presentations (RM-ANOVA across CS1-CS4; F(3,51) = 

1.263, p = 0.297). Although no significant differences among treatment groups in 

freezing behavior were seen for Pre CS1 for female animals (F(3,31) = 1.273, p = 0.301), 

the phaclofen group displayed a significant decrease in freezing across cue presentations 

(RM-ANOVA; F(3,31) = 3.012, p = 0.045; Tukey post hoc: phaclofen versus saline, p = 

0.028). One-way ANOVA revealed the significant reductions occurred during CS1 (F(3,31) 
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= 4.298, p = 0.012; Tukey post hoc: phaclofen versus saline, p = 0.006) and CS2 (F(3,31) = 

3.308, p = 0.033; Tukey post hoc: phaclofen versus saline, p = 0.026). 

 For Contextual Day 7 Post Reminder (Figure 8b), no significant differences were 

found for the male animals across the two minute blocks (RM-ANOVA across blocks; 

F(3,51) =  0.386, p = 0.764). Similarly, no significant differences in freezing were observed 

between treatment groups for the female animals (RM-ANOVA across blocks; F(3,31) = 

1.811, p = 0.166). 
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Morris Water Maze 

 Latency to reach the hidden platform across successive days was measured for six 

consecutive days (Figure 9a). No significant differences were observed in latency for 

males between treatment groups across hidden platform training (RM-ANOVA; F(3,215) = 

2.079, p = 0.104). Similarly, latencies between treatment groups for the female animals 

were not significantly different across days (RM-ANOVA; F(3,215) = 0.017, p = 0.997). 

Swim speed across hidden platform training days (Figure 10a) revealed no differences 

between the male treatment groups (RM-ANOVA; F(3,215) = 1.989, p = 0.117) and the 

female treatment groups (RM-ANOVA; F(3,79)  = 1.711, p = 0.172). However, 

thigmotaxis (proportion of time spent on the outer perimeter, Figure 10b) differed among 

the male treatment groups across hidden platform days (RM-ANOVA; F(3,215)  = 2.882, p 

= 0.037) with the ketamine group spending significantly more time along the perimeter 

(Tukey post hoc, p = 0.049). The female treatment groups displayed no differences in 

time spent along the perimeter across hidden platform days (RM-ANOVA; F(3,80)  = 

2.342, p = 0.079). Separate analyses were performed comparing only male ketamine 

group to the male saline group. The male ketamine group displayed a significantly 

increased latency to find the hidden platform over successive days (RM-ANOVA; F(1,38) 

= 6.883, p = 0.012). Swim speed was not significantly different between the male saline 

and ketamine groups (RM-ANOVA; F(1,109) = 0.063, p = 0.802), the ketamine group did 

display higher thigmotaxis (RM-ANOVA; F(1,109) = 7.141, p = 0.009) which could be 

related to the longer latency during the hidden trials.  

 After completion of the last day of hidden platform training, a probe trial was 

performed (Figure 9b). The baclofen treated males failed to display a selective search as 
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measured by time spent in target quadrant versus all other quadrants (F(3,51) = 4.493, p = 

0.007; Tukey post hoc: target versus quadrant 1, p = 0.118; target versus quadrant 2, p = 

0.043; target versus quadrant 3, p = 0.006 ). The male saline, ketamine, and phaclofen 

group each displayed a significant search during the probe trial (saline: F(3,55) = 15.015, p 

= 0.000; Tukey post hoc, target versus quadrant 1, p = 0.000; target versus quadrant 2, p 

= 0.000; target versus quadrant 3, p = 0.000; ketamine: F(3,55)  = 13.886, p = 0.000; Tukey 

post hoc, target versus quadrant 1, p = 0.008; target versus quadrant 2, p = 0.000; target 

versus quadrant 3, p = 0.000; phaclofen: F(3,51) = 11.176, p = 0.000; Tukey post hoc, 

target versus quadrant 1, p = 0.005; target versus quadrant 2, p = 0.000; target versus 

quadrant 3, p = 0.000). In the female animals, a selective search for the former platform 

location was observed for the baclofen (F(3,32) = 15.153, p = 0.000; Tukey post hoc target 

versus quadrant 1, p = 0.000; target versus quadrant 2, p = 0.000; target versus quadrant 

3, p = 0.000) and phaclofen (F(3,36) = 4.865, p = 0.006; Tukey post hoc target versus 

quadrant 1, p = 0.039; target versus quadrant 2, p = 0.008; target versus quadrant 3, p = 

0.027) treated female groups as measured by the proportion of time spent in the target 

quadrant.  The female saline and ketamine treatment groups did not exhibit a selective 

search, failing to spend significantly more time in any quadrant (saline: F(3,20) = 1.362, p = 

0.283; ketamine: F(3,36) = 1.466, p = 0.240).  

 Reversal training was carried out 24 hours following the probe trial. Neither the 

males nor female animals displayed any significant differences in latency to find the new 

platform location (Figure 9a; Males: F(3,215) = 1.079, p = 0.359; Females: F(3,136) = 0.767, 

p = 0.514) or swim speed differences (Figure 10a; Males: F(3,215) = 0.734, p = 0.533; 

Females: F(3,135) = 1.740, p = 0.162). However, the ketamine treated male group exhibited 
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a significant increase in thigmotaxis compared to the control group (Figure 10b; F(3,215) = 

4.621, p = 0.04; Tukey post hoc saline versus ketamine, p = 0.010). No significant 

differences in thigmotaxis were observed between the female treatment groups (Figure 

10b; F(3,136) = 1.527, p = 0.210).  

Visible platform training was conducted to assess visuomotor abilities. Significant 

differences were found among the male treatment groups for latency to locate the visible 

platform (Figure 9a; RM-ANOVA; F(3,215) = 3.039, p = 0.030); however, no significant 

differences between groups were detected in post hoc analyses  (Tukey post hoc; saline 

versus ketamine, p = 0.927; saline versus baclofen, p = 0.991; saline versus phaclofen, p 

= 0.069). While no differences were observed between the male treatment groups for 

swim speed (Figure 10a; RM-ANOVA; F(3,215) = 0.817, p = 0.457), the ketamine and 

phaclofen groups displayed an increase thigmotaxis across the two visible days (Figure 

10b; RM-ANOVA; F(3,215) = 6.061, p = 0.001; Tukey post hoc, saline versus ketamine, p 

= 0.001; saline versus phaclofen, p = 0.028). Based on the females’ performance during 

the hidden platform and reversal training days, they received only one day of visible 

training. No significant differences were observed for the latency (Figure 9a; F(3,136) = 

0.086, p = 0.968) and swim speed (Figure 10a; F(3,136) = 2.424, p = 0.069) between 

treatment groups; however, the ketamine treated female group displayed an increased 

thigmotaxis compared to saline (Figure 10b; F(3,136) = 3.165, p = 0.027; Tukey post hoc 

saline versus ketamine, p = 0.025).  



www.manaraa.com

53 

 

 

Figure 9. Morris Water Maze Latency and Probe Trial. (a) Mean latency (±SEM) across 
hidden platform days, reversal, and visible. Male ketamine group took significantly 
longer to find hidden platform across days. No differences were observed in the females. 
* = Significant difference between saline versus ketamine, p < 0.05. (b) Mean percent 
time in quadrant (±SEM) with target versus quadrants for each treatment group. Male 
saline, ketamine, and phaclofen groups and female baclofen and phaclofen group spent 
significantly more time in the target quadrant versus quadrant 1, 2, and 3. * = 
Significantly different from target quadrant, p < 0.05.  
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Figure 10. Swim Speed and Thigmotaxis. (a) Mean swim speed (±SEM) across hidden, 
reversal, and visible days for males and females. No significant differences were 
observed. (b) Mean proportion thigmotaxis (±SEM) across hidden, reversal, and visible 
days for males and females. Ketamine males displayed a significant increase in 
thigmotaxis for hidden, reversal, and visible days while the phaclofen males displayed a 
significant increase on visible days. No differences were observed in the females. * = 
Significantly different from saline, p > 0.05. 
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Tail Flick 

 Tail flick (Figure 11) was performed to examine nociception differences between 

treatment groups following the completion of the Morris water maze. No significant 

differences were observed between treatment groups for males (One-way ANOVA; F(3,51) 

= 0.903, p = 0.446) or females (F(3,31) = 0.691, p = 0.565) indicating no nociceptive 

changes may be related to any differences in the above data.  

 

Figure 11. Tail Flick Latency. Mean latency (±SEM) to remove tail from hot water. No 
differences were observed between treatment groups for males or females.  
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Tissue Analysis 

SDS-PAGE Western Blotting 

 Protein levels of multiple specific receptor subtypes relating to GABA and 

NMDA signaling in the cortex were analyzed via SDS-PAGE/Western blotting. No 

significant differences were observed between treatment groups in the protein levels of 

either of the identified subtypes of the GABAB1 receptor subunit (1a or 1b; Figure 12a) 

for males (1a: F(3,46) = 1.090, p = 0.363; 1b: F(2,46) = 0.591, p = 0.624) or females (1a: 

F(3,41)  = 0.863, p = 0.468; 1b: F(3,41) = 2.639, p = 0.062). Separate analyses were 

performed to examine differences in only the animals treated with the GABAB ligands 

compared to saline. Baclofen and phaclofen treated males did not exhibit any differences 

in protein levels of either of the GABAB1 (1a and 1b) receptor subunit (1a: F(2,33) = 0.666, 

p = 0.521; 1b: F(2,32) = 0.506, p = 0.607). A significant increase was observed in the 

protein levels of the 1b receptor subunit in the phaclofen treated females (F(2,33) = 6.323, 

p = 0.005; Tukey post hoc for saline versus phaclofen, p = 0.004) while no differences 

were detected for the 1b receptor subunit in the post hoc analyses for baclofen treated 

females (Tukey post hoc for saline versus baclofen, p = 0.192). Additionally, no 

differences were detected in the 1a receptor subunit for the baclofen or phaclofen treated 

females (F(2,32) = 0.564, p = 0.574).    

 Evaluation of GABAB2 receptor protein levels in the cortex (Figure 12b) did not 

reveal any significant differences in the males (F(3,59) = 0.930, p = 0.432). However, the 

female phaclofen group displayed a significant increase in expression level GABAB2 

(F(3,41) = 4.919, p = 0.005; Tukey post hoc for saline versus phaclofen, p = 0.003). No 
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differences were found for GABAAα5 protein levels (Figure 12c) between the treatment 

groups in males (F(3,44) = 0.523, p = 0.669) or females (F(3,38)  = 0.471, p = 0.704).  
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Figure 12. GABA Receptor Protein Levels. (a) Proportion (±SEM) and representative 
blots of GABAB1a and GABAB1b protein levels normalized to β-Actin from the cortex. No 
differences were observed between the male treatment groups. Phaclofen treated females 
displayed increased GABAB1b protein levels compared to controls.# = Significantly 
different from saline (baclofen and phaclofen in analysis only), p < 0.05. (b) Proportion 
(±SEM) and representative blots of GABAB2 protein levels normalized to β-Actin from 
the cortex. No differences observed between male treatment groups. Phaclofen treated 
females displayed a significant increase in GABAB2 protein levels. * = Significantly 
different from saline, p < 0.05. (c) Proportion (±SEM) and representative blots of 
GABAα5 protein levels normalized to β-Actin from the cortex. No differences were 
observed between males and females. 
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Protein levels for GAD67 (Figure 13a) were not significantly different between 

treatment groups for males (F(3,50) = 0.568, p = 0.639) or females (F(3,36) = 0.611, p = 

0.612). However, the literature suggests a difference in GAD67 protein levels between 

males versus females related to developmental maturation, therefore additional analysis 

were conducted to directly compare GAD67 protein expression in males and females in 

the same treatment groups (Figure 13b). A significant increase in the GAD67 protein 

expression was observed for the phaclofen treated females compared to the phaclofen 

treated males (F(1,20) = 6.505, p = 0.019) and for the ketamine treated females compared 

to the ketamine treated males (F(1,22) = 9.601, p = 0.005). No differences were seen 

between the male and female saline groups (F(1,18) = 0.047, p = 0.831) or between the 

male and female baclofen groups F(1,22) = 1.577, p = 0.222). 
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Figure 13. GAD67 Protein Levels. (a) Proportion (±SEM) and representative blots of 
GAD67 protein levels normalized to β-Actin from the cortex. No significant differences 
were observed between treatment groups for males or females. (b) Proportion (±SEM) of 
GAD67 protein levels normalized to the males. A significant increase was observed for 
the ketamine treated females compared to ketamine treated males as well as a significant 
increase for GAD67 in the phaclofen treated females compared to phaclofen treated 
males. * = Significantly different from males, p < 0.05. 
 
  The evaluation of the NR2B subunit of the NMDA receptor protein levels (Figure 
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0.880, p = 0.458; kalirin 7: F(3,50) = 0.465, p = 0.708; kalirin 9: F(3,50) = 0.497, p = 0.686; 

kalirin 12: F(3,50) = 1.255, p = 0.300).  

 

 

Figure 14. NR2B and Kalirin Protein Levels. (a) Proportion (±SEM) and representative 
blots of NR2B protein levels normalized to β-Actin from the cortex. No significant 
differences were observed. (b) Proportion (±SEM) and representative blots of kalirin 
protein levels normalized to β-Actin from the cortex. A significant increase was observed 
for kalirin 5 isoform in phaclofen treated females. * = Significantly different from saline, 
p < 0.05.  
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CHAPTER 5 

DISCUSSION 

Administration of ligands that alter the function of GABAB or NMDA receptor 

function during a critical period in early brain development produced a sizable change in 

behavior in adulthood. The early life alterations in GABAB and NMDA receptor 

signaling also produced a change in several proteins in the brain. Specifically, 

administering ketamine on PND 7, 9, and 12 (Hypothesis 1) disrupted responses in PPI 

and performance in the Morris water maze. Additional changes were observed in protein 

expression of GAD67 in males versus females. The administration of GABAB ligands 

(baclofen or phaclofen) in development (Hypothesis 2) altered acoustic startle responses, 

PPI, performance in the Morris water maze, and the expression of multiple proteins 

related to GABAeric signaling as well as a protein implicated in synapse formation. 

These data represent the first reports of a lifelong change in both behavioral and 

biochemical processes associated with early life GABAB receptor function. The deficits 

observed differed based on gender and the specific behavioral task or protein.  

The data in these studies demonstrate behavioral alterations in acoustic startle 

response and PPI in adulthood from the transient enhancement or blockade of the 

GABAB receptor system during development. These findings also lend evidence to the 

importance of these receptors during early brain development. Inhibitory tone mediated 

through GABAB and NMDA receptors in adulthood is necessary for the prepulse to 

reduce the acoustic startle response in PPI. The acoustic startle response is a simple, 

sensorimotor reflex in the presence of fear (Koch & Schnitzler, 1997). In this experiment, 

the male and female treatment groups displayed different behavior in their acoustic startle 
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responses. The male baclofen group displayed an enhanced startle response across 

multiple startle stimuli whereas the female animals administered baclofen displayed a 

decrease in the startle response. The male ketamine group did not display an increase in 

startle response across startle intensities (RM-ANOVA not significant versus saline) and, 

therefore, we cannot state that they exhibited an increase in startle response overall 

despite an increase in startle for the 100 dB startle stimulus. While no differences were 

observed in the male phaclofen group, the female phaclofen group displayed a significant 

reduction in startle response across intensities and, in particular, at the 120 dB level. 

Decreases in acoustic startle response are typically observed after habituation or 

sensitization after repetitive presentations (Pilz & Schnitzler, 1996). In our experimental 

methods, the stimuli are only presented five times randomized throughout the session 

thus insufficient for habituation or sensitization. Based on this, the increase in acoustic 

startle response in the baclofen male group as well as the reduction seen in both the 

baclofen and phaclofen females likely represent a gender dependent disruption to GABA 

signaling involved in the sensorimotor circuitry.   

Assessing the influence of multiple temporal gaps (interstimulus intervals; ISI) 

between the prepulse and the startling stimulus allows for the ability to parse discrete 

regions and transmitter systems involved in the multisensory PPI circuitry. The 

nonstartling prepulse inhibits the reflexive response to a startling stimulus if it precedes 

the startling stimulus between 10-1000 ms (Hoffman & Ison, 1980). By manipulating the 

interval between the prepulse and startle stimulus (ISI), differing neurotransmitter 

systems and brain regions are involved (Hoffman & Ison, 1980; Swerdlow et al., 2001; 

Yeomans et al., 2010). NMDA receptors located in the prefrontal cortex and the 
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hippocampus mediate the inhibition of the prepulse between ISIs of 100-500 ms 

(Swerdlow et al., 2001). Both ionotropic and metabotropic GABA receptors also 

influence the inhibition of the startle response. PPI occurring at shorter ISIs (starting at 

20 ms) are principally governed by GABAA receptors due to the fast acting nature of 

these ionotropic channels (Yeomans et al., 2010). Metabotropic GABAB receptors exhibit 

a longer latency to activate but induce a longer lasting inhibitory effect that can impact 

PPI over a wide range of ISIs beginning at approximately 40 ms ranging to as much as 

500 ms (Yeomans et al., 2010). The combination of GABA A and GABAB receptors allow 

for PPI over the entire range of intervals. The reduction in PPI in the 100 ms ISI trials in 

females administered baclofen, phaclofen, and ketamine with no difference in the male 

animals suggest that the females may be more sensitive to the subtle changes in these 

receptor systems during early brain development. Interestingly, the reduction in PPI 

across multiple prepulse intensities (see Figure 3) is typically seen in patients with 

schizophrenia and animal models of schizophrenia (Bolton et al., 2012; Cilia et al, 1997; 

Mansbach and Geyer 1991; Sabbagh et al., 2012; Swerdlow et al., 1998). One can argue 

that the deficits displayed by the female baclofen and phaclofen in the PPI with 100 ms 

ISI may be due to the reduction of the acoustic startle response. To a certain extent, the 

startle response might have contributed to the deficits seen in the PPI with 100 ms ISI but 

there were no differences in the female baclofen group in the PPI with 40 ms ISI making 

it unlikely that the PPI deficits are an artifact of the reduced startle response.  

The lack of reduction and borderline enhancement of the startle response in PPI is 

extremely rare. More compelling is that at the 40 ms ISI for both the phaclofen treated 

males and females exhibited this deficit, and this is the only difference shared by the 
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males and females in this study. This indicates that, following GABAB receptor 

antagonism in early life, not only did the animals fail to display the normal reduction in 

startle response in the presence of a prepulse, but in some animals, there was an increase 

in the startle response on trials that contained the prepulse. Few reports indicate a change 

similar to those observed with limited data indicating only select stimulants can produce 

this effect (Ashare et al., 2010; Gould et al., 2005). Knockout mice with reduced 

expression of GABAB1 receptors also display an enhanced response with the presence of 

the prepulse (Prosser et al., 2001). However, these mice also experience seizures and 

resemble a model of epilepsy. Further, homozygous knockout of GABAB1 leads to 

premature death. It is plausible that the reduction of GABAB receptors in the knockout 

study may lead to a compensatory gain in systems that affect the PPI circuitry. Although 

our experiment only transiently blocked GABAB receptors at brief intervals in early brain 

development, it is clear that the alteration in GABAB receptor function did alter circuits 

involved in PPI in a similar way as in the knockout study. These data further imply the 

importance of normal functioning of the GABAB receptors during brain development.  

The spatial learning and memory results from the Morris water maze revealed 

some interesting findings. The importance of NMDA receptors during adulthood in 

learning the hidden platform location using spatial cues have been observed in numerous 

studies (Amaral & Witter, 1991; Moser, Moser, & Andersen, 1993; Sabbagh et al., 2012). 

Multiple studies have demonstrated that the administration of NMDA receptor 

antagonists induce deficits in spatial learning and memory (Didriksen, Skarsfeldt, & Arnt, 

2007; Moosavi et al., 2012; Sabbagh et al., 2012). In this experiment, the male ketamine 

group displayed deficits locating the hidden platform across training days indicating 
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impairment in spatial learning; however, the selective search during the probe trial 

suggests they did learn the location using a spatial strategy. There are multiple non-

spatial as well as spatial strategies a subject can use to navigate this maze. The most 

efficient spatial strategy is to immediately orient to the spatial cues in the room once 

placed in the water and swim directly to the hidden platform location, an approach 

commonly seen in controls. A less efficient strategy is a mixture of procedural and spatial 

where the subject explores the maze before locating a specific position then orients itself 

to find the hidden platform location (Vorhees & Williams, 2006). Based on the male 

ketamine group latencies, the selective search during the probe trial, and the high 

thigmotaxis, a possibility exists that these animals did not immediately attend to the 

spatial cues once placed in the maze but instead swam around the perimeter before 

orienting to the general area where the platform was located. This indicates that postnatal 

administration of ketamine to male animals produced a subtle deficit compared to the 

controls in acquiring the location of the hidden platform location but based on the 

selective search during the probe, the animals were able to solve the task. Our data are 

consistent with previous studies administering an alternative NMDA receptor antagonist 

(PCP) during the same developmental time period (PND 7, 9, and 11) in which PCP 

administration demonstrated robust deficits acquiring the hidden platform location across 

days and significantly increased thigmotaxis for male animals but no differences were 

observed for the females (Andersen & Pouzet, 2004). PCP binds the NMDA receptor for 

a longer period of time compared to ketamine (Zukin & Zukin, 1979) which may account 

for more robust deficits observed in developmental PCP administration. Therefore, the 
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data from our experiment demonstrate that impairments in spatial learning and memory 

can result from a subtle disruption in NMDA receptor function during development.    

Few studies have specifically investigated and used ligands that target GABAB 

receptors in spatial learning and memory tasks. Although there are no other studies to 

compare the effects of GABAB receptor alteration in development to adulthood 

performance in the Morris water maze, we did not find any differences in the acquisition 

of the hidden platform training for the baclofen or phacofen treated male animals. 

However, the male baclofen group failed to display a selective search during the probe 

trial. Equivalent performance throughout training and a lack of a selective search during 

the probe trial does indicate an impairment in learning the task (Beiko, Candusso, & 

Cain, 1997; Kinney, Starosta, & Crawley, 2003; Wolfer et al., 1998). One possibility is 

that the baclofen treated males were using a non-spatial strategy such as swimming a 

specific distance from the wall of the maze and eventually bumping into the hidden 

platform (Beiko, Candusso, & Cain, 1997; Kinney, Starosta, Crawley, 2003). Without 

adopting a spatial strategy using the cues to solve the task would explain the nonselective 

search. For the female data, the hidden platform training data suffered considerable 

variability which may have influenced the lack of a difference between treatment groups. 

Both the female saline and ketamine group did not display a selective search during the 

probe trial but it is difficult to interpret the data for the ketamine group when the controls 

failed to demonstrate learning the spatial task. Numerous studies have indicated greater 

variability in female animals performance in the water maze (Andersen and Pouzet, 2004; 

Beiko et al., 2004; Berger et al., 2006; Frick et al., 2000; Wang et al., 2001). Estrogen 
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levels have been demonstrated to influence learning strategy in tasks like the Morris 

water maze which may explain the females’ behavior (Chesler & Juraska, 2000). 

Emotional learning and memory was examined using trace cued and contextual 

fear conditioning. All treatment groups froze equivalently after the CS-US presentations 

on training day, indicating equivalent effects of training and no differences were 

observed during the initial cued fear or contextual fear sessions. All of the male and 

female groups displayed similar extinction to the fear associations as demonstrated by the 

reduction of fear behavior across days. Our laboratory has previously demonstrated 

alterations in ketamine or GABAB receptor function in adulthood alters the cued fear 

association (Bolton et al., 2012; Heaney et al., 2012). Additionally, following the 

administration of ketamine in adult animals an increase in protein levels specific to the 

postsynaptic subunit (1b) of the GABAB receptor was observed in the amygdala (Bolton 

et al., 2012). This suggests an interaction between changes in NMDA receptor function 

and GABAB receptors in fear conditioning (Bolton et al., 2012). Diminished NMDA 

receptor function results in decreased excitation of GABAergic interneurons thus 

diminished GABA release and an alteration in GABA receptors (Bolton et al., 2012; 

Zhang, Behrens, Lisman, 2008). A reduction in NMDA receptor activity is hypothesized 

to be involved in the pathophysiology of schizophrenia so it is logical to determine if a 

change in GABAB receptors produces similar behavioral alterations as a change in 

NMDA receptors as it relates to this disorder. Separate experiments performed in our 

laboratory investigating GABAB receptor function associated with CCF in adult animals 

revealed impaired extinction of the learned association in baclofen administered adult 

animals (Heaney et al., 2012). Therefore, it has been demonstrated that ketamine and 
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baclofen produce deficits in the trace cue fear association which relies on both the 

amygdala and hippocampus (Bolton et al., 2012; Heaney et al., 2012). Since NMDA 

antagonists induce a change in GABAB receptor levels and both NMDA antagonists and 

GABAB agonists produce deficits in fear learning, it is important to investigate the 

adulthood behavioral effects of postnatal alteration of these neurotransmitter systems as it 

relates to CCF. An interesting observation in this current experiment is that the phaclofen 

treated female group displayed a decrease in freezing to the CS following the reminder 

session compared to the controls (Figure 8a). Since there were no differences in freezing 

before the reminder trial, this may indicate that the phaclofen females did not exhibit 

equivalent reinstatement of the fear association compared to controls. Reinstatement is 

the recovery of the fear response following a post-extinction presentation of the CS-US 

(Kim & Richardson, 2007). In neurobiological models of extinction as well as studies 

that demonstrate impaired extinction in rats with medial prefrontal cortex (mPFC) 

lesions, it is theorized that the mPFC inhibits the amygdala by activating GABA 

interneurons during the expression of extinction (Hobin, Goosens, & Maren, 2003; 

Morgan, Schulkin, & LeDoux, 2003; Quirk et al., 2000; Santini et al., 2004; Sotres-

Bayon, Cain, & LeDoux 2006). Adding to this, current neurobiological models of 

extinction maintain that the hippocampus modulates the expression of learned fear or 

extinction by inhibiting or exciting the mPFC (Hobin, Goosens, & Maren, 2003; Kim & 

Richardson, 2007). The CS-US reminder triggers the hippocampal inhibition of the 

mPFC, preventing the mPFC from inhibiting the amygdala following extinction. From 

this model, we can infer from the reinstatement deficit observed in the phaclofen treated 

females that disrupted GABA signaling within the hippocampus-mPFC-amygdala 
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network may have contributed to a reduction in reinstatement of the conditioned fear. 

While this change is subtle, it does indicate an alteration in Pavlovian learning as a result 

of phaclofen administration in early life.      

In order to examine if alterations in specific proteins may be related to the 

behavioral changes observed in the present experiments, we performed SDS-PAGE 

directed at multiple GABA, NMDA, and associated targets in all groups. We also 

investigated if any changes were observed in the kalirin protein that is associated with 

synapse formation and remodeling and has also been found to be altered in schizophrenia. 

Cortex samples were evaluated based on previous literature indicating alterations in 

GABAergic function being related to deficits in behavioral tasks and patient post-mortem 

tissue in this region (Fatemi, Folsom, Thuras, 2011; Guidotti et al., 2000; Ishikawa et al., 

2005; Swerdlow et al., 2001; Woolley et al., 2013). The GABAB receptor is composed 

two distinct subunits, GABAB1 and GABAB2. Distinct GABAB1 isoforms have been 

determined to be specific to either the presynaptic (1a) or postsynaptic (1b) expression 

(Steiger et al., 2004). The phaclofen treated females displayed a significant increase in 

the postsynaptic (1b) isoform of the GABAB receptor. Combined with the increased 

expression in the GABAB2 receptor subunit for the phaclofen treated females, these data 

indicate there may be an overall increased expression of postsynaptic GABAB receptors. 

This suggests that an increase in the expression of postsynaptic GABAB receptors 

resulted from the brief antagonism of GABAB receptors during development. An increase 

in postsynaptic receptors in the phaclofen treated females may be related to the deficits 

observed in the acoustic startle response and PPI at multiple intervals. The 

neurotransmitter acetylcholine is necessary to produce the startle response in both the 
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acoustic startle and PPI and is regulated by inhibitory circuits (Swerdlow et al., 200l; 

Yeomans et al,. 2010). The decrease in PPI observed indicates a lack of reduction in the 

startle response in the presence of the prepulse. These data, coupled with the increase in 

postsynaptic GABAB receptors, may reflect diminished GABA tone thus a lack of 

inhibition on cholinergic neurons. However, the extent to which this increase in protein 

resulted in functional GABAB receptors remains to be determined as well as the time 

point at which this increase occurred (in development, adolescence, or adulthood).  

We investigated other GABA related proteins that have been implicated in PPI 

and schizophrenia as well as those that may be related to a change in GABA signaling. 

GABAAα was examined for protein differences between treatment groups as a reduction 

has been demonstrated following PPI deficits, similar to the ones observed in this study 

(Hauser et al., 2005). However, no differences were seen in the GABAAα5 receptor, which 

indicates the early life treatment did not induce a change in all GABAergic signaling 

targets.   

Evidence suggests that increases in GAD67 levels positively correlate with 

GABA release. Although no differences existed between treatment groups within each 

gender, we examined if the treatment had differential effects comparing genders. 

Changes in GAD67 mRNA are influenced by steroid hormones such as progesterone and 

estrogen (McCarthy et al., 1995; Perrot-Sinal, Davis, McCarthy, 2001; Searles et al., 

2000). However, there are conflicting reports on GAD67 expression as either being 

increased or decreased in the presence of estrogen (McCarthy et al., 1995; Souza et al., 

2009). Based on the sexually dimorphic expression of GAD67, we examined whether the 

effect of treatment may influence expression of this protein between genders. The data 
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indicated a significant increase in the females when normalized to males of the same 

treatment, indicating a difference between gender in the ketamine and phaclofen treated 

animals. Studies demonstrate that GABA exerts a negative feedback effect on the 

expression of GAD67 in vivo and in vitro and GAD67 is particularly sensitive to changes 

in GABA (Rimvall & Martin, 1994). An increased expression in GAD67 protein may 

indicate a reduction in GABA levels in the cortex. The increased expression of GAD67 in 

the ketamine treated females compared to ketamine treated males may explain the sex 

differences observed in PPI with 100 ms ISI. Since GABA is necessary for the inhibition 

of this task, altered GABA levels as indicated by increased GAD67 expression may 

account for the deficit. In addition, expression of GAD67 in the phaclofen treated females 

(compared to the phaclofen treated males) was increased. Based on data that indicate an 

inverse relation between GAD67 protein expression and GABA levels as well as our 

findings that GABAB1b and GABAB2 protein levels are increased in phaclofen treated 

females, these results may indicate decreased GABA levels in the prefrontal cortex of 

these animals.  Reduced GABA levels would explain the PPI with 100 ms ISI deficits and 

possibly the lack of reinstatement in CCF for the phaclofen treated females. The 

expression of GAD67 was not changed between genders for the saline and baclofen 

group which means the changes are specific to the phaclofen and ketamine treated 

groups. The data suggest that the blocking either the GABAB or the NMDA receptor 

during this developmental time point had a greater impact on the female developing 

nervous system compared to the male.  

As GABAB has been implicated in numerous processes underlying neuronal 

migration and synapse formation (Ben-Ari et al., 2007; Huang, Di Cristo, & Ango, 2007; 
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Gaiarsa et al., 2011; Owens & Kriegstein, 2002; Represa & Ben-Ari, 2005;), we also 

investigated if changes in proteins associated with synaptogenesis and remodeling were 

observed in the treatment groups. One protein in particular, kalirin, has been found to 

serve a role in synapse formations and restructuring (Ma et al., 2008). Differential 

expression of kalirin isoforms has also been observed in post-mortem analysis of patients 

with schizophrenia. Some studies report an increase in expression (Deo et al., 2012) 

while others report a decreased expression (Hill, Hashimoto, Lewis, 2006; Penzes & 

Remmers, 2012) in the prefrontal cortex. In our experiment, the phaclofen treated 

females displayed an increase in protein expression levels for kalirin 5. An excess of 

kalirin indicates that the mechanisms involved in synapse formation are dysregulated, 

which may be associated with excessive attempts to build synapses (Penzes & Remmers, 

2012). This may indicate a role for GABAB receptors in regulating synapse formation 

during early brain development. This can also be related to the increased expression in 

the other proteins examined (postsynaptic GABAB receptors and GAD67) in that altered 

function of GABAB receptors results in dysregulated synapse formation leading to 

behavioral deficits in the female animals. However, this theory requires further 

investigation.   

The most apparent differences in the above study were reflected in the female 

treatment groups. These findings were unexpected as we did not anticipate the 

differences between the sexes. Few studies include females in both behavioral and 

biochemical experimental conditions, especially studies that focus on animal models of 

schizophrenia. Most animal studies utilize exclusively male rodents as opposed to 

females unless the researchers are interested in the influence of hormones (estrogens). 
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Interestingly, estrogen has been demonstrated to be neuroprotective against cellular 

dysfunction and damage, which has been shown in vitro and in vivo (see Singh, Dykens, 

Simpkins, 2006). Separately, studies by Woolley (1997, 1998) reveal that chronic 

administration of estradiol increase NMDA receptor expression and sensitivity to 

glutamate. During the proestrus phase of a rodent estrous cycle, when estrogen levels are 

at their peak, the number of synapses in the hippocampus increased by 30% compared to 

the estrous phase when estrogen levels are the lowest (Warren and Juraska, 1997). The 

drastic change in hippocampal morphology across the rodent estrous cycle is further 

complicated by the length of the cycle. The estrous cycle of a rodent is very short (four 

days) and influences their behavior in multiple tasks including PPI (Koch, 1998) and 

learning and memory tasks (for review, see Dohanich, 2002). Investigations using female 

rodents include initial tests for phase in the estrous cycle using a variety of methods. In 

this experiment, estrous phase was not examined; however, all females were housed in 

the same colony room. Based on previously established studies that mammalian females 

synchronize their ovarian cycles while living in close proximity (see McClintock, 1984), 

we elected to not examine the phase of estrous. Instead, we pseudo randomized the pair-

housed cage assignments between treatment groups in the colony room.  If there were 

differences in the phase of cycle between animals, we tried to minimize the effect it may 

have had in one treatment group versus another. Future studies performed in our 

laboratory with females will incorporate estrous phase testing to ensure all animals are in 

the same phase. 

In this current experiment, the hormonal regulation of developmental processes 

may have played a larger role than we had initially hypothesized. Estrogen and 
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progesterone receptors are abundant in brain regions involved in reproduction but they 

are also found in smaller concentrations in regions such as the basal forebrain, 

hippocampus, and cortex. Estrogen and progesterone binding to these receptors affect the 

rates at which proteins are synthesized (Dohanich, 2003). For example, estrogen and 

progesterone secreted by the ovaries or exogenously administered can alter enzymes, 

receptors, transporters, and other proteins associated with glutamate and GABA signaling 

(Daniel & Dohanich, 2001). During development, the estradiol concentrations are the 

same in neonatal male and female animals (Amateau et al., 2004; McCarthy & Konkle, 

2005; Nunez and McCarthy, 2008). Sexual differentiation appears during the first to 

second week of life due to a perinatal testosterone surge in male rodents (Ravizza et al., 

2003; Galanopoulou, 2008). As it relates to the NMDA and GABA signaling, the sex 

dependent change that occurs during this early period in the rodent life is the differential 

expression of the neuronal Cl--extruding K+/Cl- co-transporter (KCC2; promotes chloride 

extrusion). As outlined, GABA in development is excitatory when acting upon pyramidal 

GABAA receptors until after the end of first postnatal week of life in a rat (Ben-Ari et al., 

1989). These effects are due to the relatively high expression of the Na2+/K+/Cl- co-

transporter 1 (NKCC1; promotes Cl- entry into the cell) and the low expression of the 

KCC2 which results in a high intracellular Cl- concentration (Ben-Ari, 2002; Damborsy 

& Winzer-Serhan, 2012; Payne, Stevenson, Donaldson, 1996; Rivera et al., 1999). After 

the first postnatal week of life in a rat, NKCC1 is downregulated and KCC2 is 

upregulated, allowing Cl- to be expelled out of the cells which results in a shift of GABA 

binding GABAA receptors to induce an inhibitory post synaptic potential (Ben-Ari, 2002; 

Rivera, 1999). This process is sex dependent as it occurs earlier in females compared to 
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males (Damborsky & Winzer-Serhan, 2012; Galanopoulou, 2008; Nunez & McCarthy, 

2007). Therefore, the differences observed between males and females in the present 

experiments may be due to the administration of ligands during the time this shift occurs 

and the extended duration of GABA-mediated excitation in the multiple male brain 

regions (Nunez and McCarthy, 2007; Galanopoulou, 2008). The administration of 

GABAB and NMDA ligands during this postnatal time period would then produce 

differential effects in males and females. In the current investigation, we observed 

multiple deficits in female animals following changes in GABAB receptor function. 

Given that the switch from excitatory to inhibitory occurred during the same time frame 

as when these drugs were administered in females (as this switch happens earlier 

compared to males), it is possible that alterations in receptor systems from the drug 

administration presented substantial problems in the females. This may also account for 

the lack of deficits in the males as the drug administration occurred prior to this switch in 

depolarizing effects of GABA on GABAA receptors. The increase in inhibition during 

development as seen in the females during the drug administration period may represent a 

critical period that, when disrupted, results in lifelong alterations. By blocking GABAB 

receptors in females, the inhibition by which they rely may have greater effects. This may 

be a potential explanation for the deficits observed in this experiment and the changes in 

protein expression of multiple GABA related markers. Administering GABAB ligands at 

different developmental time points might further elucidate the effects of GABAB 

receptors and this excitatory to inhibitory shift in early brain develop.    

 These experiments were performed to determine if early life changes in NMDA or 

GABAB receptors would produce alterations with relevance to schizophrenia. Despite a 
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lack of a comprehensive demonstration of schizophrenia deficits in these animals, several 

groups did exhibit deficits related to the disorder. For the behavioral tasks, the phaclofen 

and baclofen treated females as well as the ketamine treated males exhibited deficits in 

the PPI with 100 ms ISI and only the ketamine male animals demonstrated subtle spatial 

learning and memory deficits. Although there were increases in the protein expression of 

multiple markers examined for the phaclofen treated females, our data do not agree with 

the protein changes observed in the post-mortem studies except for the increase in kalirin 

5. Typically, the patient population exhibits a reduction in GABAB receptor proteins, 

GABAA α5, GAD67, and NR2B (Fatemi, Folsom, Thuras, 2011; Guidotti et al., 2000; 

Hauser et al., 2005; Ishikawa et al., 2005; Mizukami, 2000, 2002; Zai et al., 2005) 

whereas the differences observed in this study demonstrated only increased expression in 

a subset of these proteins. In addition, sex differences exist in the schizophrenia patient 

population. These include men exhibiting more negative symptoms compared to women 

(see Leung & Chue, 2000). The results from our study comparing males versus females 

do not reflect what is seen in the patient population.  

 Regardless of how these results relate to schizophrenia, the deficits between the 

treatment groups are intriguing. A subtle alteration of these receptor systems in early 

brain development produced a lifelong behavioral change as evidenced by deficits in PPI, 

learning and memory, and changes in several protein levels. This study supports a role for 

precise signaling of the GABAB and NMDA receptors within specific time periods in 

mammalian brain development. These neurotransmitter systems are involved in 

establishing early neuronal networks (Komuro & Rakic, 1993; LoTurco, Blanton, & 

Kriegstein, 1991; Uhlhaas et al., 2010), and slight alterations in GABAB or NMDA 
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receptor mediated signaling may be sufficient to permanently alter connectivity that 

persists into adulthood. Although other neurodevelopmental studies administering 

NMDA receptor antagonist produced similar and differing deficits, most use more potent 

drugs such as PCP and MK-801 and some studies inject the drug for multiple consecutive 

days (Andersen and Pouzet, 2004; Broberg et al., 2010; Harich, Gross, Bespalov, 2007; 

Takahashi et al., 2006; Wang et al., 2001). Our study set out to examine subtle alterations 

in the NMDA receptor in development rather than a robust reduction in its function. To 

our knowledge, this study is the first to assess the effects in adulthood on behavioral and 

specific protein levels of early postnatal administration of a GABAB receptor agonist and 

antagonist. The deficits produced by both ligands establish the importance of the GABAB 

receptor and pave the way for future studies to further elucidate the role of GABAB 

receptors in development and their possible involvement in neurodevelopmental 

disorders. 

 Additional investigations are required to elucidate the mechanisms involved in 

disruption the GABAB and NMDA receptors in early brain development. Examining the 

effects of several concentrations and multiple time points in development would aid in 

the characterization of the role of these receptor systems in development. Further protein 

analysis of additional brain regions and protein markers may also provide insight into the 

mechanisms involved. The data from this study provide only a glimpse of the importance 

of normal function of the GABAB and NMDA receptors in early brain development.   
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